DOI QR코드

DOI QR Code

The Quantity and Pattern of Leaf Fall and Nitrogen Resorption Strategy by Leaf-litter in the Gwangneung Natural Broadleaved Forest

광릉숲 천연활엽수림의 수종별 낙엽 현상과 질소 재전류 특성

  • Kwon, Boram (Forest Technology and Management Research Center, National Institute of Forest Science) ;
  • Kim, Hyunseok (Department of Forest Sciences, Seoul National University) ;
  • Yi, Myong Jong (Department of Forest Resources, Kangwon National University)
  • 권보람 (국립산림과학원 산림기술경영연구소) ;
  • 김현석 (서울대학교 산림과학부 산림환경학전공) ;
  • 이명종 (강원대학교 산림환경시스템학과)
  • Received : 2019.09.06
  • Accepted : 2019.09.28
  • Published : 2019.09.30

Abstract

The seasonality of leaf fall has important implications for understanding the response of trees' phenology to climate change. In this study, we quantified the leaf fall pattern with a model to estimate the timing and speed of leaf litter according to species and considered the nutrient use strategy of canopy species. In the autumns of 2015 and 2016, leaf litter was collected periodically using 36 litter-traps from the deciduous forests in Gwangneung and sorted by species. The seasonal leaf fall pattern was estimated using the non-linear regression model of Dixon. Additionally, the resorption rate was calculated by analyzing the nitrogen concentration of the leaf litter at each collection time. The leaf litter generally began in early October and ended in mid-November depending on the species. At the peak time (T50) of leaf fall, on average, Carpinus laxiflora was first, and Quercus serrata was last. The rate of leaf fall was fastest (18.6 days) for Sorbus alnifolia in 2016 and slowest (40.8 days) for C. cordata in 2015. The nitrogen resorption rates at T50 were 0.45% for Q. serrata and 0.48% for C. laxiflora, and the resorption rate in 2015 with less precipitation was higher than in 2016. Since falling of leaf litter is affected by environmental factors such as temperature, precipitation, photoperiod, and $CO_2$ during the period attached foliage, the leaf fall pattern and nitrogen resorption differed year by year depending on the species. If we quantify the fall phenomena of deciduous trees and analyze them according to various conditions, we can predict whether the changes in leaf fall timing and speed due to climate change will prolong or shorten the growth period of trees. In addition, it may be possible to consider how this affects their nutrient use strategy.

본 연구에서는 낙엽 현상을 정량화하는 모델을 적용하여 광릉숲 천연활엽수림에서 수종에 따른 낙엽의 시기와 속도를 추정하고, 이에 따른 상층 수종의 양분이용특성을 검토하였다. 낙엽은 2015년과 2016년의 가을에 36개의 낙엽수거망을 이용해 주기적으로 수집하였으며, 5개 수종으로 분류하여 측정한 건중량을 딕슨의 모델에 적용했다. 또한 수집시기마다 낙엽의 질소농도를 분석하여 재전류율을 산출하였다. 광릉숲의 낙엽은 10월 초에 시작하여 11월 중순까지 떨어졌는데, 수종에 따라 두 해에 다른 경향을 보였다. 평균적으로 낙엽이 절정인 시기는 상층의 서어나무가 먼저, 졸참나무가 가장 늦게 나타났고, 낙엽의 속도는 팥배나무가 최소 18.6일 동안 빠르게, 까치박달이 최대 40.8일 동안 천천히 나타났다. 한편 낙엽이 절정일 때 상층 수종의 질소 재전류율은 졸참나무 평균 0.45%, 서어나무 평균 0.48%로 나타났으며, 졸참나무의 재전류율은 강수량이 적었던 2015년에 높게 나타났다. 잎은 달려있던 기간의 기온, 강수량, 광주기, $CO_2$ 등의 환경변화에 영향을 받아 탈락되므로 낙엽 현상과 재전류율은 수종에 따라 연간 다른 경향의 차이를 보였다. 향후 낙엽수들의 계절현상을 정량화하고 여러 조건에 따라 비교 분석 한다면 기후변화에 의한 낙엽 시기와 속도의 조절이 수목의 생육 기간을 연장 혹은 단축할 지를 예측하고, 이것이 양분이용특성에 어떠한 영향을 미치는지를 구명할 수 있을 것이다.

Keywords

References

  1. Aerts, R., 1996: Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 597-608.
  2. Abadia, A., E. Gil, F. Morales, L. Montanes, G. Montserrat, and J. Abadia, 1996: Marcescence and senescence in a submediterranean oak (Quercus subpyrenaica): Photosynthetic characteristics and nutrient composition. Plant, Cell & Environment 19(6), 685-694. https://doi.org/10.1111/j.1365-3040.1996.tb00403.x
  3. Aikawa, T., R. Tateno, and H. Takeda, 2002: Leaf phenology along a slope in a cool temperate deciduous forest. Forest Research, Kyoto University (Japan).
  4. Berkley, E. E., 1931: Marcescent leaves of certain species of Quercus. Botanical Gazette 92(1), 85-93. https://doi.org/10.1086/334178
  5. Choi, C. H., S. G. Jung, and K. H. Park, 2016: Analyzing relationship between satellite-based plant phenology and temperature. Journal of the Korean Association of Geographic Information Studies 19(1), 30-42. (in Korean with English abstract) https://doi.org/10.11108/kagis.2016.19.1.030
  6. Curtis, P. S., P. J. Hanson, P. Bolstad, C. Barford, J. Randolph, H. Schmid, and K. B. Wilson, 2002: Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agricultural and Forest Meteorology 113(1-4), 3-19. https://doi.org/10.1016/S0168-1923(02)00099-0
  7. Del Arco, J. M., A. Escudero, and M. V. Garrido, 1991: Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology 72(2), 701-708. https://doi.org/10.2307/2937209
  8. Doi, H., and M. Takahashi, 2008: Latitudinal patterns in the phenological responses of leaf colouring and leaf fall to climate change in japan. Global Ecology and Biogeography 17(4), 556-561. https://doi.org/10.1111/j.1466-8238.2008.00398.x
  9. Dragoni, D., and A. F. Rahman, 2012: Trends in fall phenology across the deciduous forests of the eastern USA. Agricultural and Forest Meteorology 157, 96-105. https://doi.org/10.1016/j.agrformet.2012.01.019
  10. Dixon, K., 1976: Analysis of seasonal leaf fall in north temperate deciduous forests. Oikos, 300-306.
  11. Ellsworth, D., and P. Reich, 1996: Photosynthesis and leaf nitrogen of amazonian rain forest trees along a secondary succession. Ecology 77, 581-594. https://doi.org/10.2307/2265632
  12. Escudero, A., and J. Del Arco, 1987: Ecological significance of the phenology of leaf abscission. Oikos, 11-14.
  13. Fracheboud, Y., V. Luquez, L. Bjorken, A. Sjodin, H. Tuominen, and S. Jansson, 2009: The control of autumn senescence in european aspen. Plant Physiology 149(4), 1982-1991. https://doi.org/10.1104/pp.108.133249
  14. Fisher, J. I., A. D. Richardson, and J. F. Mustard, 2007: Phenology model from surface meteorology does not capture satellite-based greenup estimations. Global Change Biology 13 (3), 707-721 https://doi.org/10.1111/j.1365-2486.2006.01311.x
  15. Gill, D. S., J. S. Amthor, and F. H. Bormann, 1998: Leaf phenology, photosynthesis, and the persistence of saplings and shrubs in a mature northern hardwood forest. Tree Physiology 18, 281- 289. https://doi.org/10.1093/treephys/18.5.281
  16. Hong Y., S. Lee, S. Lee, E. Lee, E. Kim, H. Park, H. Jeong, and Y. You, 2018: The phenological responses of leaf of deciduous woody species to base temperature maintenance. Korean Journal of Ecology and Environment 51(4), 259-267. (in Korean with English abstract) https://doi.org/10.11614/KSL.2018.51.4.259
  17. Hoshaw, R. W., and A. T. Guard, 1949: Abscission of marcescent leaves of Quercus palustris and Q. coccinea. Botanical Gazette 110(4), 587-593. https://doi.org/10.1086/335558
  18. Ibanez, I., R. B. Primack, A. J. Miller-Rushing, E. Ellwood, H. Higuchi, S. D. Lee, H. Kobori, and J. A. Silander, 2010: Forecasting phenology under global warming. Biological Sciences 365(1555), 3247-3260. https://doi.org/10.1098/rstb.2010.0120
  19. Inagaki, Y., A. Sakai, S. Kuramoto, E. Kodani, T. Yamada, and T. Kawasaki, 2008: Inter annual variations of leaf-fall phenology and leaf-litter nitrogen concentration in a hinoki cypress (Chamaecyparis obtusa Endlicher) stand. Ecological Research 23(6), 965-972. https://doi.org/10.1007/s11284-008-0461-9
  20. Inagaki, Y., S. Okuda, A. Sakai, A. Nakanishi, S. Shibata, and H. Fukata, 2010: Leaf-litter nitrogen concentration in hinoki cypress forests in relation to the time of leaf fall under different climatic conditions in japan. Ecological Research 25(2), 429-438. https://doi.org/10.1007/s11284-009-0672-8
  21. Isaacson, B. N., S. P. Serbin, and P. A. Townsend, 2012: Detection of relative differences in phenology of forest species using landsat and MODIS. Landscape Ecology 27(4), 529-543. https://doi.org/10.1007/s10980-012-9703-x
  22. Jeong, J. H., K. S. Koo, C. H. Lee, and C. S. Kim, 2002: Physio-chemical properties of Korean forest soils by regions. Journal Korean Forest Society 91, 694-700. (in Korean with English abstract)
  23. Jeong, S., C. HO, H. GIM, and M. E. Brown, 2011: Phenology shifts at start vs. end of growing season in temperate vegetation over the northern hemisphere for the period 1982-2008. Global Change Biology 17(7), 2385-2399. https://doi.org/10.1111/j.1365-2486.2011.02397.x
  24. Jo, H. K., and T. W. Ahn, 2008: Differences in phenological phases of plants subsequent to microclimate change. Korean Journal of Environment and Ecology 22(3), 221-229. (in Korean with English abstract)
  25. Jung M. H., D. K. Lee, T. W. Um, Y. S. Kim, K. C. Kwon, and K. H. Jung, 2008: Effects of thinning on nutrient input by rainfall and litterfall in natural hardwood forest at Mt. Joongwang, Gangwon-do. Korean Journal of Soil Science and Fertilizer 41(1), 1-8. (in Korean with English abstract)
  26. Kasurinen, A., C. Biasi, T. Holopainen, M. Rousi, M. Maenpaa, and E. Oksanen, 2012: Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure. Tree Physiology 32(6), 737-751. https://doi.org/10.1093/treephys/tps005
  27. Kikuzawa, K.,1983: Leaf survival of woody plants in deciduous broad-leaved forests. 1. tall trees. Canadian Journal of Botany 61(8), 2133-2139. https://doi.org/10.1139/b83-230
  28. Killingbeck, K. T., 1996: Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology 77(6), 1716-1727. https://doi.org/10.2307/2265777
  29. Killingbeck, K. T., 2004: Nutrient resorption, plant cell death processes. Elsevier, 215-226.
  30. Kim, H. J., J. K. Hong, S. C. Kim, S. H. Oh, and J. H. Kim, 2011: Plant phenology of threatened species for climate change in sub-alpine zone of Korea-especially on the summit area of Mt. Deogyusan. Korean Journal of Plant Resources 24(5), 549-556. (in Korean with English abstract) https://doi.org/10.7732/kjpr.2011.24.5.549
  31. Kim, J. H. 2004: One hundred years of ecology in Korea. Seoul University Press, Seoul, Korea, 179pp.
  32. Kim, N. S., Y. C. Cho, S. H. Oh, H. J. Kwon, and G. S. Kim, 2014: A phenology modelling using MODIS time series data in South Korea. Korean Journal of Ecology and Environment, 47pp. (in Korean with English abstract)
  33. Kitaoka, S., and T. Koike, 2005: Seasonal and yearly variations in light use and nitrogen use by seedlings of four deciduous broad-leaved tree species invading larch plantations. Tree Physiology 25(4), 467-475. https://doi.org/10.1093/treephys/25.4.467
  34. KMA (Korea Meteorological Administration), 2018: https://data.kma.go.kr
  35. Kobe, R. K., C. A. Lepczyk, and M. Iyer, 2005: Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86(10), 2780-2792. https://doi.org/10.1890/04-1830
  36. Kofpi, 2018: http://map.forest.go.kr/forest/?systype=mapSearch&searchOption=stock
  37. Koike, T., 1988: Leaf structure and photosynthetic performance as related to the forest succession of deciduous Broad-Leaved Trees 1. Plant Species Biology 3(2), 77-87. https://doi.org/10.1111/j.1442-1984.1988.tb00173.x
  38. Koike, T., 1990: Autumn coloring, photosynthetic performance and leaf development of deciduous broad-leaved trees in relation to forest succession. Tree Physiology 7, 21-32. https://doi.org/10.1093/treephys/7.1-2-3-4.21
  39. Korner, C., and D. Basler, 2010. Plant science: phenology under global warming. Science 327(5972), 1461-1462. https://doi.org/10.1126/science.1186473
  40. Kramer, K., I. Leinonen, and D. Loustau, 2000: The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and mediterranean forests ecosystems. An overview. International Journal of Biometeorology 44(2), 67-75. https://doi.org/10.1007/s004840000066
  41. Kwon, B., N. J. Heo, H. Y. Shin, H. S. Kim, P. S. Park, and M. J. Yi, 2014: Nutrient use strategy of Carpinus cordata saplings growing under different forest stand conditions. Korean Journal of Agricultural and Forest Meteorology 16(3), 188-196. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2014.16.3.188
  42. Kwon B., J. H. Jeon, H. S. Kim, and M. J. Yi, 2016: Estimation of specific leaf area index using direct method by leaf litter in Gwangneung, mt. Taewha and mt. Gariwang. Korean Journal of Agricultural and Forest Meteorology 18(1), 1-18. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2016.18.1.1
  43. Larcher, W., 2003: Physiological plant ecology: Ecophysiology and stress physiology of functional groups. Springer Science & Business Media.
  44. Lee, B., E. Kim, J. Lee, J. M. Chung, and J. H. Lim, 2018: Detecting phenology using MODIS vegetation indices and forest type map in South Korea. Korean Journal of Remote Sensing 34(2), 267-282. (in Korean with English abstract) https://doi.org/10.7780/kjrs.2018.34.2.1.9
  45. Lee, K. M., W. T. Kwon, and S. H. Lee, 2009: A study on plant phenological trends in South Korea. Journal of the Korean association of regional geographers 15(3), 337-350. (in Korean with English abstract)
  46. Menzel, A., 2000: Trends in phenological phases in Europe between 1951 and 1996. International journal of biometeorology 44, 76-81. https://doi.org/10.1007/s004840000054
  47. Milla, R., P. Castro-Diez, M. Maestro-Martinez, and G. Montserrat-Marti, 2005: Does the gradualness of leaf shedding govern nutrient resorption from senescing leaves in mediterranean woody plants? Plant and Soil 278, 303-313. https://doi.org/10.1007/s11104-005-8770-z
  48. Niinemets, U., and U. Tamm, 2005: Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiology 25(8), 1001-1014. https://doi.org/10.1093/treephys/25.8.1001
  49. Park, B. K., and I. S. Lee, 1980: Effects of habitat and nutrient content of leaves on the Litter decomposition of Larix kaempferi and Quercus serrata at Kwangnung. Journal of Plant Biology 23(2), 45-48. (in Korean with English abstract)
  50. Pedersen, L. B., and J. Bille-Hansen, 1999: A comparison of litterfall and element fluxes in even aged norway spruce, sitka spruce and beech stands in denmark. Forest Ecology and Management 114(1), 55-70. https://doi.org/10.1016/S0378-1127(98)00381-8
  51. Reich, P. B., and R. Borchert, 1984: Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. The Journal of Ecology, 61-74.
  52. Salazar, S., L. Sanchez, P. Galindo, and I. Santa-Regina, 2011: N and P resorption efficiency and proficiency from leaves under different forest management systems of deciduous woody species. Journal of Engineering and Technology Research 3(14), 388-397.
  53. Santa Regina, I., and T. Tarazona, 2001: Nutrient cycling in a natural beech forest and adjacent planted pine in northern Spain. Forestry 74(1), 11-28. https://doi.org/10.1093/forestry/74.1.11
  54. Samish, R. M., 1954: Dormacy in woody plants. Annual review of plant physiology 5, 183-204. https://doi.org/10.1146/annurev.pp.05.060154.001151
  55. Seo, D., H. Jung, J. W. Kang, Y. Hong, H. Kim, H. Mun, Y. Chae, Y. Kim, M. Lim, and J. K. Kim, 2015: A study on phenology of Pinus densiflora in the Baekdudaegan area. Journal of Agriculture and Life Sciences 49(6), 121-132. (in Korean with English abstract)
  56. Son, Y., D. Kim, I. Park, M. J. Yi, and H. Jin, 2007: Production and nutrient cycling of oak forests in Korea: A case study of Quercus mongolica and Q. variabilis stands. Kangwon National University. (in Korean with English abstract)
  57. Staelens, J., L. Nachtergale, A. De Schrijver, M. Vanhellemont, K. Wuyts, and K. Verheyen, 2011: Spatio-temporal litterfall dynamics in a 60-year-old mixed deciduous forest. Annals of Forest Science 68(1), 89-98. https://doi.org/10.1007/s13595-011-0010-5
  58. Tateno, R., T. Aikawa, and H. Takeda, 2005: Leaf-fall phenology along a topography-mediated environmental gradient in a cool-temperate deciduous broad-leaved forest in japan. Journal of Forest Research 10(4), 269-274. https://doi.org/10.1007/s10310-004-0135-6
  59. Yu, H., E. Luedeling, and J. Xu, 2010: Winter and spring warming result in delayed spring phenology on the tibetan plateau. Proceedings of the National Academy of Sciences of the United States of America 107(51), 22151-22156. https://doi.org/10.1073/pnas.1012490107
  60. Van Hees, A., and A. Clerkx, 2003: Shading and root-shoot relations in saplings of silver birch, pedunculate oak and beech. Forest Ecology and Management 176(1), 439-448. https://doi.org/10.1016/S0378-1127(02)00307-9
  61. Vegis A., 1964: Dormacy in higher plants. Annual review of plant physiology 15, 185-224. https://doi.org/10.1146/annurev.pp.15.060164.001153
  62. Vila-Vicosa, C., F. Vazquez, C. Meireles, and C. Pinto-Gomes, 2014: Taxonomic peculiarities of marcescent Oaks (Quercus, Fagaceae) in southern Portugal. Lazaroa 35, 139-153.
  63. Vitousek, P., 1982: Nutrient cycling and nutrient use efficiency. American Naturalist 119(4), 553-572. https://doi.org/10.1086/283931
  64. Waddell, K. J., C. W. Fox, K. D. White, and T. A. Mousseau, 2001: Leaf abscission phenology of a scrub oak: Consequences for growth and survivorship of a leaf mining beetle. Oecologia 127(2), 251-258. https://doi.org/10.1007/s004420000576
  65. Wang, W., M. Wang, and P. Lin, 2003: Seasonal changes in element contents in mangrove element retranslocation during leaf senescene. Plant and Soil 252(2), 187-193. https://doi.org/10.1023/A:1024704204037
  66. Walther, G. R., E. Poset, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. Fromentin, O. Hoegh-Guldberg, and F. Bairlein, 2002: Ecological responses to recent climate change. Nature 461, 389-395. https://doi.org/10.1038/nature08350
  67. Way, D. A., 2011: Tree phenology responses to warming: Spring forward, fall back? Tree Physiology 31(5), 469-471. https://doi.org/10.1093/treephys/tpr044
  68. Wright, S. J., and F. H. Cornejo, 1990: Seasonal drought and leaf fall in a tropical forest. Ecology 71(3), 1165-1175. https://doi.org/10.2307/1937384
  69. Wright, I., and M. Westoby, 2003: Nutrient concentration, resorption and lifespan: Leaf traits of australian sclerophyll species. Functional Ecology 17(1), 10-19. https://doi.org/10.1046/j.1365-2435.2003.00694.x
  70. Xiao, J., Q. Zhuang, B. E. Law, D. D. Baldocchi, J. Chen, A. D. Richardson, J. M. Melillo, K. J. Davis, D. Y. Hollinger, and S. Wharton, 2011: Assessing net ecosystem carbon exchange of US terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations. Agricultural and Forest Meteorology 151(1), 60-69. https://doi.org/10.1016/j.agrformet.2010.09.002
  71. Xu, C. Y., K. L. Griffin, and W. S. F. Schuster, 2007: Leaf phenology and seasonal variation of photosynthesis of invasive Berberis thunbergii (Japanese barberry) and two co-occurring native understory shrubs in a northeastern United States deciduous forest. Oecologia 154(1), 11-21. https://doi.org/10.1007/s00442-007-0807-y
  72. Yan, E., X. Wang, and J. Huang, 2006: Shifts in plant nutrient use strategies under secondary forest succession. Plant and Soil 289(1-2), 187-197. https://doi.org/10.1007/s11104-006-9128-x
  73. Yan, E., X. Yang, S. X. Chang, and X. Wang, 2013: Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china. PloS One 8(4), e61113. https://doi.org/10.1371/journal.pone.0061113
  74. Yasumura, Y., Y. Onoda, K. Hikosaka, and T. Hirose, 2005: Nitrogen resorption from leaves under different growth irradiance in three deciduous woody species. Plant Ecology 178(1), 29-37. https://doi.org/10.1007/s11258-004-2485-8
  75. Yi, K., J. T. Maxwell, M. K. Wenzel, D. T. Roman, P. E. Sauer, R. P. Phillips, and K. A. Novick, 2019: Linking variation in intrinsic water-use efficiency to isohydricity: A comparison at multiple spatiotemporal scales. New Phytologist 221(1), 195-208. https://doi.org/10.1111/nph.15384