DOI QR코드

DOI QR Code

Analysis and Experiment on the Tape Spring Hinges for CubeSat Missions

큐브위성 임무를 위한 테이프 스프링 힌지의 비선형 거동 분석 및 실험

  • Yoo, JeongUk (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Im, Byeong-Uk (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Shin, SangJoon (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2019.06.12
  • Accepted : 2019.09.21
  • Published : 2019.10.01

Abstract

This paper explores an implementation of finite element analysis and experiment in the design process of a tape spring hinge used for various CubeSat missions. Tape spring hinges consist of short-length hardened-steel strips with one-sided curvature, and thus the behavior is subject to large deformation with unpredicted non-linearity. Precise dimensions of a commercial tape spring are traced by the use of high-resolution digital camera, and thin-shell FEM analysis is conducted using ABAQUS program. Based on the rotation-moment analysis suggested in previous studies, parametric analysis is conducted by adjusting the contributing factors such as strip thickness and the subtended angle of the cross section. Finally the behaviors are investigated by both analytical and non-linear finite element methods, and the results are compared with the simple measurements. Further studies suggest a possible application in dynamic characteristics of hinges during CubeSat operations.

본 연구에서는 최근 다양한 큐브위성 임무에 사용되는 테이프 스프링 힌지의 거동 해석을 수행하였다. 테이프 스프링은 곡선 단면을 갖는 직선형의 얇은 스트립이며 곡률에 따라 달라지는 강성변화로 인해 비선형성이 강하게 발생한다. 이전 연구에서 제시된 회전-모멘트 선도 모델을 바탕으로 테이프 스프링의 거동 특성을 분석하였으며, 시중에 판매되는 상용 테이프 스프링 형상을 정확하게 모사하여 ABAQUS 수치 해석을 진행하였다. 테이프 스프링을 굽히는데 소요되는 최대 모멘트를 예측하였으며 단면의 원호각이나 두께 등의 변화에 따른 파라미터 스터디를 수행하였다. 또한 간략한 실험을 통해 수치해석 결과를 비교 검증하여 보다 정밀한 큐브위성 동적 거동 해석을 위한 향후 연구 방향을 제시한다.

Keywords

References

  1. Wuest, W., "Einige anwendungen der theorie der zylinderschale," Journal of Applied Mathematics and Mechanics, Vol. 34, No. 12, 1954, pp. 444-454.
  2. Walker, S. J. I., and Aglietti, G., "A study of tape spring fold curvature for space deployable structures," Proceedings of the Institution of Mechanical Engineers, Vol. 221, No. 3, 2007, pp. 313-325. https://doi.org/10.1243/09544100JAERO209
  3. Soykasap, O., "Analysis of tape spring hinges," International Journal of Mechanical Sciences, Vol. 49, No. 7, 2007, pp. 853-860. https://doi.org/10.1016/j.ijmecsci.2006.11.013
  4. Seffen, K. A., You, Z., and Pellegrino, S., "Folding and deployment of curved tape springs," International Journal of Mechanical Sciences, Vol. 42, No. 10, 2000, pp. 2055-2073. https://doi.org/10.1016/S0020-7403(99)00056-9
  5. Jeong, J. W., Yoo, Y. I., Shin, D. K., Lim, J. H., Kim, K. W., and Lee, J. J., "A novel tape spring hinge mechanism for quasi-static deployment of a satellite deployable using shape memory alloy," Review of Scientific Instruments, Vol. 85, No. 2, 2014.
  6. Jeong, J. W., Yoo, Y. I., Lee, J. J., Lee C. H., Kim K. W., Lim, J. H., and Hwang, D. S., "Development and verification of a finite element analysis model for performance evaluation of a tape spring hinge," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2011, pp. 1533-1539.
  7. The CubeSat Program, "CubeSat Design Specification Rev. 13," California Polytechnic State University, 2014.