DOI QR코드

DOI QR Code

Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator

직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델

  • Received : 2019.07.17
  • Accepted : 2019.09.21
  • Published : 2019.10.01

Abstract

Instead of hydraulic actuation systems, an electromechanical actuation system is more efficient in terms of weight, cost, and test evaluation in the thrust vector control of the 7-ton gimbal engine used in the Korea Space Launch Vehicle-II(KSLV-II) $3^{rd}$ stage. The electromechanical actuator is a kind of servo actuator with position feedback and uses a BLDC motor that can operate at high vacuum. In the case of the gimballed rocket engine, a synthetic resonance phenomenon may occur due to a combination of a vibration mode of the actuator itself, a bending mode of the launcher structure, and an inertial load of the gimbals engine. When the synthetic resonance occurs, the control of the rocket attitude becomes unstable. Therefore, the requirements for the stiffness have been applied in consideration of the gimbal engine characteristics, the support structure, and the actuating system. For the 7-ton gimbal engine of the KSLV-II $3^{rd}$ stage, the stiffness requirement of the actuation system is $3.94{\times}10^7N/m$, and the direct drive type electromechanical actuator is designed to satisfy this requirement. In this paper, an equivalent stiffness analysis model of a direct drive electromechanical actuator designed based on the stiffness requirements is proposed and verified by experimental results.

한국형발사체 3단에 사용되는 7톤 짐벌엔진의 추력벡터제어에는 전기유압식 구동장치시스템 대신 중량, 비용 및 시험평가 등의 측면에서 더 효율적인 전기기계식 구동장치시스템을 사용한다. 전기기계식 구동기는 위치제어 서보 구동기로 고진공에서도 운용 가능한 BLDC 모터를 사용한다. 짐벌엔진을 갖는 발사체의 경우 구동기 자체 진동모드와 구동기를 지지하는 기체구조체의 벤딩모드, 짐벌엔진의 관성부하 등이 조합되어 합성공진 현상이 발생할 수 있다. 합성공진이 발생할 경우 발사체 자세제어는 불안정해진다. 이러한 관계로 짐벌엔진 및 기체구조체 지지부, 구동장치시스템의 고유 특성을 고려하여 강성에 대한 요구규격이 적용되어 왔다. 한국형발사체 3단 7톤 짐벌엔진의 경우 구동장치시스템의 강성요구규격은 $3.94{\times}10^7N/m$ 수준이며 이를 만족시키기 위한 직구동 방식전기기계식 구동기를 설계하였다. 본 논문에서는 강성요구규격을 기반으로 설계된 직구동 전기기계식 구동기의 등가강성 해석모델을 제안하고, 이를 실험결과로 검증하였다.

Keywords

References

  1. Lee, H. J., and Kang, E. S., "Development of Direct Drive Electro-mechanical Actuation System for Thrust Vector Control of KSLV-II," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 10, 2016, pp. 911-920. https://doi.org/10.5139/JKSAS.2016.44.10.911
  2. Lee, H. J., Kang, E. S., and Song, O. S., "A Study on the Dynamic Characteristics Improvement of Direct Drive Electro-mechanical Actuation System using Dynamic Force Feedback Control," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 45, No. 4, 2017, pp. 328-341. https://doi.org/10.5139/JKSAS.2017.45.4.328
  3. Structural Integrations with Control Systems, NASA SP-8079, 1971.
  4. Sun, B. C., Oh, C. S., Park, Y. K., and Roh, W. R., "Thrust Vector Control Stiffness Requirements of Launch Vehicles," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2012, pp. 2007-2012.
  5. Renault, C., "Usefulness of A Force Feedback on Electromechanical Actuator," Proceedings of the 6th International ESA Conference on Guidance, Navigation and Control Systems, Vol. 1, 18.1-18.10, 2005.
  6. Cowan, J. R., and Weir, R. A., "Design and Test of Electromechanical Actuators for Thrust Vector Control," The 27th Aerospace Mechanisms Symposium, 2016, pp. 349-366.
  7. Bilyaletdinova, L., and Steblinkin, A., "Simulation of Direct Electromechanical Actuator with Ballscrew," Procedia Engineering 176, 2017, pp. 85-95. https://doi.org/10.1016/j.proeng.2017.02.276
  8. MIL-B-82820F, Military Specification, February 1994.
  9. Super Precision Bearing Catalogue, NSK Korea, June 2015.
  10. Roller Screw Catalogue, SKF Group, April 2014.
  11. Min, B. J., Choi, H. D., and Kang, E. S., "Research of Synthetic Resonance Characteristics for Electrohydraulic Thrust Vector Control Actuation System," Aerospace Engineering and Technology, Vol. 7, No. 1, July 2008, pp. 151-160.