References
- S. Chauhan, S. Chauhan, R. D'Cruz, S. Faruqi, K. K. Singh, S. Varma, M. Singh, and V. Karthik, Chemical warfare agents, Environ. Toxicol. Pharmacol., 26, 113-122 (2008). https://doi.org/10.1016/j.etap.2008.03.003
- J. Lavoie, S. Srinivasan, and R. Nagarajan, Using cheminformatics to find simulants for chemical warfare agents, J. Hazard. Mater., 194, 85-91 (2011). https://doi.org/10.1016/j.jhazmat.2011.07.077
- M. Enserink, U. N. taps special labs to investigate Syrian attack, Science, 341, 1050-1051 (2013). https://doi.org/10.1126/science.341.6150.1050
- A. M. Howitt and R. L. Pangi, Countering Terrorism: Dimension of Preparedness, 356-357, The MIT Press, Cambridge, Massachusetts, USA (2003).
- T. Nakagawa and A. T. Tu, Murders with VX: Aum Shinrikyo in Japan and the assassination of Kim Jong-Nam in Malaysia, Forensic Toxicol., 36, 542-544 (2018). https://doi.org/10.1007/s11419-018-0426-9
- L. Szinicz, History of chemical and biological warfare agents, Toxicology, 214, 167-181 (2005). https://doi.org/10.1016/j.tox.2005.06.011
- M. Bennett, TICs, TIMs, and terrorists commodity chemicals take on a sinister role as potential terrorist tools, Todays Chemist at Work, 12, 21-26 (2003).
- A. W. Khan, S. Kotta, S. H. Ansari, J. Ali, and R. K. Sharma, Recent advances in decontamination of chemical warfare agents, Def. Sci. J., 63, 487-496 (2013). https://doi.org/10.14429/dsj.63.2882
- K. B. Kim, O. G. Tsay, D. A. Atwood, and D. G. Churchill, Destruction and detection of chemical warfare agents, Chem. Rev., 111, 5345-5403 (2011). https://doi.org/10.1021/cr100193y
- F. M, Raushel, Catalytic detoxification, Nature, 469, 310-311 (2011). https://doi.org/10.1038/469310a
- B. M. Smith, Catalytic methods for the destruction of chemical warfare agents under ambient conditions, Chem. Soc. Rev., 37, 470-478 (2008). https://doi.org/10.1039/B705025A
- Y. C. Yang, J. A. Baker, and J. R. Ward, Decontamination of chemical warfare agents, Chem. Rev., 92, 1729-1743 (1992). https://doi.org/10.1021/cr00016a003
- N. J. Rabkin, United States General Accounting Office Reports: DOD should Eliminate DS2 from Its Inventory of Decontaminants, GAO, Gaithersburg, Maryland, USA (1990).
- M. Rani and U. Shanker, Degradation of traditional and new emerging pesticides in water by nanomaterials: Recent trends and future recommendations, Int. J. Environ. Sci. Technol., 15, 1347-1380 (2018). https://doi.org/10.1007/s13762-017-1512-y
- D. B. Kim, B. Gweon, S. Y. Moon, and W. Choe, Decontamination of the chemical warfare agent simulant dimethylmethylphosphonate by means of large-area low-temperature atmospheric pressure plasma, Curr. Appl. Phys., 9, 1093-1096 (2009). https://doi.org/10.1016/j.cap.2008.12.006
- R. A. Moss, K. W. Alwis, and G. O. Bizzigotti, o-Iodosobenzoate: Catalyst for the micellar cleavage of activated esters and phosphates, J. Am. Chem. Soc., 105, 681-682 (1983). https://doi.org/10.1021/ja00341a092
- H. Morales-Rojas and R. A. Moss, Phosphorolytic reactivity of o-iodosylcarboxylates and related nucleophiles, Chem. Rev., 102, 2497-2521 (2002). https://doi.org/10.1021/cr9405462
- R. A. Moss, K. W. Alwis, and J. S. Shin, Catalytic cleavage of active phosphate and ester substrates by iodoso- and iodoxybenzoates, J. Am. Chem. Soc., 106, 2651-2655 (1984). https://doi.org/10.1021/ja00321a027
- R. A. Moss, D. Bolikal, H. D. Durst, and J. W. Hovanec, Polymer-bound iodosobenzoate reagents for the cleavage of reactive phosphates, Tetrahedron Lett., 29, 2433-2436 (1988). https://doi.org/10.1016/S0040-4039(00)87900-9
- R. A. Moss and Y. C. Chung, Immobilized iodosobenzoate catalysts for the cleavage of reactive phosphates, J. Org. Chem., 55, 2064-2069 (1990). https://doi.org/10.1021/jo00294a019
- I. W. Yang, J. S. Kim and Y. J. Chung, Catalytic hydrolysis reactions of alkylammonium IBA, J. Korean. Ind. Eng. Chem., 13, 407-410 (2002).
- I. W. Yang and D. G. Kang, A study on the synthesis of bis-IBA derivatives and their catalytic effects on the hydrolysis reaction of nerve agents, J. Korean Inst. Mil. Sci. Technol., 2, 73-81 (1999).
- K. K. Ghosh, D. S Sinha, M. L. Satnami, A. K. Shrivastave, D. K. Dubey, and G. L. Mundhara, Kinetic study of hydrolytic decomposition of organophosphates and thiophosphate by N-hydroxyamides in cationic micellar media, Indian J. Chem., 45, 726-730 (2006).
- R. K. Kalakuntla, T. Wille, R. Le Provost, S. Letort, G. Reiter, S. Muller, H. Thiermann, F. Worek, G. Gouhier, O. Lafont, and F. Estour, New modified-cyclodextrin derivatives as detoxifying agents of chemical warfare agents(I). Synthesis and preliminary screening: Evaluation of the detoxification using a half-quantitative enzymatic assay, Toxicol. Lett., 216, 200-205 (2013). https://doi.org/10.1016/j.toxlet.2012.11.020
- A. Saxena, A. Sharma, B. Singh, M. V. S. Suryanarayana, T. H. Mahato, M. Sharma, R. P. Semwal, A. K. Gupta and K. Sekhar, Kinetics of in-situ degradation of nerve agent simulants and sarin on carbon with and without impregnants, Carbon Sci., 6, 158-165 (2005).
- T. Wagner-Jauregg, B. E. Hackley Jr., T. A. Lies, O. O. Owens, and R. Proper, Model reactions of phosphorus-containing enzyme inactivators. IV. The catalytic activity of certain metal salts and chelates in the hydrolysis of diisopropyl fluorophosphate, J. Am. Chem. Soc., 77, 922-929 (1955). https://doi.org/10.1021/ja01609a037
- R. L. Gustafson, S. Chaberek Jr., and A. E. Martell, A kinetic study of the copper(II) chelate catalyzed hydrolysis of diisopropyl phosphorofluoridate, J. Am. Chem. Soc., 85, 598-601 (1963). https://doi.org/10.1021/ja00888a027
- R. L. Gustafson and A. E. Martell, A kinetic study of the copper(II) chelate-catalyzed hydrolysis of isopropyl methylphosphonofluoridate (sarin), J. Am. Chem. Soc., 84, 2309-2316 (1962). https://doi.org/10.1021/ja00871a007
- Y. S. Kye, K. H. Jeong, and W. Y. Chung, Decomposition studies of DFP using transition metal catalysts, Appl. Chem. Eng., 21, 1-5 (2010).
- Y. S. Kye, W. Y. Chung, D. W. Kim, Y. K. Park, S. U. Song, and K. H. Jeong, A study on the decomposition of DFP using Cu(II)-chitosan complex, J. Korean Inst. Mil. Sci. Technol., 15, 699-704 (2012). https://doi.org/10.9766/KIMST.2012.15.5.699
- G. W. Wagner and P. W. Bartram, Reactions of VX, HD, and their simulants with NaY and AgY zeolites. Desulfurization of VX on AgY, Langmuir, 15, 8113-8118 (1999). https://doi.org/10.1021/la990716b
- G. W. Wagner, P. W. Bartram, O. Koper, and K. J. Klabunde, Reactions of VX, GD, and HD with nanosize MgO, J. Phys. Chem. B, 103, 3225-3228 (1999). https://doi.org/10.1021/jp984689u
- G. W. Wagner, O. B. Koper, E. Lucas, S. Decker, and K. J. Klabunde, Reactions of VX, GD, and HD with nanosize CaO: Autocatalytic dehydrohalogenation of HD, J. Phys. Chem. B, 104, 5118-5123 (2000). https://doi.org/10.1021/jp000101j
-
G. W. Wagner, L. R. Procell, R. J. O'Connor, S. Munavalli, C. L. Carnes, P. N. Kapoor, and K. J. Klabunde, Reactions of VX, GB, GD, and HD with nanosize
$Al_2O_3$ . formation of aluminophosphonates, J. Am. Chem. Soc., 123, 1636-1644 (2001). https://doi.org/10.1021/ja003518b -
G. W. Wagner, L. R. Procell, and S. Munavalli,
$^{27}Al$ ,$^{47,49}Ti$ ,$^{31}P$ , and$^{13}C$ MAS NMR study of VX, GD, and HD reactions with nanosize$Al_2O_3$ , conventional$Al_2O_3$ and$TiO_2$ , and aluminum and titanium metal, J. Phys. Chem. C., 111, 17564-17569 (2007). https://doi.org/10.1021/jp074511k - G. W. Wagner, Q. Che and Y. Wu, Reactions of VX, GD, and HD with nanotubular titania, J. Phys. Chem. C., 112, 11901-11906 (2008). https://doi.org/10.1021/jp803003k
-
T. J. Bandosz, M. Laskoski, J. Mahle, G. Mogilevsky, G. W. Peterson, J. A. Rossin, and G. W. Wagner, Reactions of VX, GD, and HD with
$Zr(OH)_4$ : Near instantaneous decontamination of VX, J. Phys. Chem. C., 116, 11606-11614 (2012). https://doi.org/10.1021/jp3028879 - K. H. Jeong, J. M. Shim, W. Y. Chung, Y. S. Kye, and D. W. Kim, Diisopropyl fluorophosphate (DFP) degradation activity using transition metal-dipicolylamine complexes, Appl. Organomet. Chem., 32, e4383-4387 (2018). https://doi.org/10.1002/aoc.4383
- J. K. Yang, S. I. Chang, S. G. Ryu, and Y. S. Yang, Catalytic effects of Cu(II)-TMED and Cu(II)-BIPY on the hydrolysis of p-nitrophenol diphenyl phosphate, Bull. Korean Chem. Soc., 15, 261-263 (1994).
- S. J. Oh, C. W. Yoon, and J. W. Park, Catalytic hydrolysis of phosphate triesters by lanthanide(III) cryptate (2.2.1) complexes, J. Chem. Soc. Perkin Trans. 2, 3, 329-331 (1996).
- W. Y. Chung and Y. S. Kye, A study on the hydrolysis of sarin and soman by merrifield-type diaminatedpolystyrene-Cu(II) heterogeneous polymers, J. Korean Inst. Mil. Sci. Technol., 3, 164-175 (2000).
- G. W. Wagner, G. W. Peterson, and J. J. Mahle, Effect of adsorbed water and surface hydroxyls on the hydrolysis of VX, GD, and HD on titania materials: The development of self-decontaminating paints, Ind. Eng. Chem. Res., 51, 3598-3603 (2012). https://doi.org/10.1021/ie202063p
- O. M .Yaghi, G. Li, and H. Li, Selective binding and removal of guests in a microporous metal-organic framework, Nature, 378, 703-706 (1995). https://doi.org/10.1038/378703a0
- N. L. Rosi, M. Eddaoudi, J. H. Kim, M. O'Keeffe, and O. M. Yaghi, Advances in the chemistry of metal-organic frameworks, Cryst. Eng. Comm., 4, 401-404 (2002). https://doi.org/10.1039/B203193K
- M. H. Yap, K. L. Fow, and G. Z. Chen, Synthesis and applications of MOF-derived porous nanostructures, Green Energy Environ., 2, 218-245 (2017). https://doi.org/10.1016/j.gee.2017.05.003
- C. Baerlocher, L. B. McCusker, and D. H. Olson, Atlas of Zeolite Framework Types, 6th ed., 140-141, 194-195, Elsevier, Netherlands (2007).
- J. Ye, L. Gagliardi, C. J. Cramer, and D. G. Truhlar, Computational screening of MOF-supported transition metal catalysts for activity and selectivity in ethylene dimerization, J. Catal., 360, 160-167 (2018). https://doi.org/10.1016/j.jcat.2017.12.007
- I. Suzuki, S. Oki, and S. Namba, Determination of external surface areas of zeolites, J. Catal., 100, 219-227 (1986). https://doi.org/10.1016/0021-9517(86)90087-4
- O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O. Yazaydin, and J. T. Hupp, Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit?, J. Am. Chem. Soc., 134, 15016-15021 (2012). https://doi.org/10.1021/ja3055639
- H. Furukawa, Y. B. Go, N. Ko, Y. K. Park, F. J. Uribe-Romo, J. H. Kim, M. O'Keeffe, and O. M. Yaghi, Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals, Inorg. Chem., 50, 9147-9152 (2011). https://doi.org/10.1021/ic201376t
- H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gandara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O'Keeffe, O. Terasaki, J. F. Stoddart, and O. M. Yaghi, Large-pore apertures in a series of metal-organic frameworks, Science, 336, 1018-1023 (2012). https://doi.org/10.1126/science.1220131
- M. Eddaoudi, J. H. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, and O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295, 469-472 (2002). https://doi.org/10.1126/science.1067208
- M. P. Suh, H. J. Park, T. K. Prasad, and D. W. Lim, Hydrogen storage in metal-organic frameworks, Chem. Rev., 112, 782-835 (2012). https://doi.org/10.1021/cr200274s
- H. W. Langmi, J. Ren, B. North, M. Mathe, and D. Bessarabov, Hydrogen storage in metal-organic frameworks: A review, Electrochim. Acta, 128, 368-392 (2014). https://doi.org/10.1016/j.electacta.2013.10.190
- Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha, and T. Yildirim, Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges, J. Am. Chem. Soc., 135, 11887-11894 (2013). https://doi.org/10.1021/ja4045289
- Y. Cui, B. Li, H. He, W. Zhou, B. Chen, and G. Qian, Metal-organic frameworks as platforms for functional materials, Acc. Chem. Res., 49, 483-493 (2016). https://doi.org/10.1021/acs.accounts.5b00530
- H. Furukawa, K. E. Cordova, M. O'Keee, and O. M. Yaghi, The chemistry and applications of metalorganic frameworks, Science, 341, 974-990 (2013).
- I. Matito-Martos, P. Z. Moghadam, A. Li, V. Colombo, J. A. R. Navarro, S. Calero, and D. Fairen-Jimenez, Discovery of an optimal porous crystalline material for the capture of chemical warfare agents, Chem. Mater., 30, 4571-4579 (2018). https://doi.org/10.1021/acs.chemmater.8b00843
- C. Montoro, F. Linares, E. Q. Procopio, I. Senkovska, S. Kaskel, S. Galli, N. Masciocchi, E. Barea, and J. A. Navarro, Capture of nerve agents and mustard gas analogues by hydrophobic robust MOF-5 type metal-organic frameworks, J. Am. Chem. Soc., 133, 11888-11891 (2011). https://doi.org/10.1021/ja2042113
- N. M. Padial, E. Q. Procopio, C. Montoro, E. Lopez, J. E. Oltra, V. Colombo, A. Maspero, N. Masciocchi, S. Galli, I. Senkovska, S. Kaskel, E. Barea, and J. A. Navarro, Highly hydrophobic isoreticular porous metal-organic frameworks for the capture of harmful volatile organic compounds, Angew. Chem. Int. Ed., 52, 8290-8294 (2013). https://doi.org/10.1002/anie.201303484
- Y. Z. Chen, R. Zhang, L. Jiao, and H. L. Jiang, Metal-organic framework-derived porous materials for catalysis, Coord. Chem. Rev., 362, 1-23 (2018). https://doi.org/10.1016/j.ccr.2018.02.008
- J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, Metal-organic framework materials as catalysts, Chem. Soc. Rev., 38, 1450-1459 (2009). https://doi.org/10.1039/b807080f
- J. B. Decoste and G. W. Peterson, Metal organic frameworks for air purification of toxic chemicals, Chem. Rev., 114, 5695-5727 (2014). https://doi.org/10.1021/cr4006473
- M. S. Lee, S. J. Garibay, A. M. Ploskonka, and J. B. DeCoste, Bioderived protoporphyrin IX incorporation into a metal-organic framework for enhanced photocatalytic degradation of chemical warfare agents, MRS Commun., 9, 464-473 (2019). https://doi.org/10.1557/mrc.2019.22
- Y. Liu, A. J. Howarth, N. A. Vermeulen, S. Y. Moon, J. T. Hupp, and O. K. Farha, Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks, Coord. Chem. Rev., 346, 101-111 (2017). https://doi.org/10.1016/j.ccr.2016.11.008
- P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, and G. Ferey, Metal-organic frameworks as efficient materials for drug delivery, Angew. Chem. Int. Ed., 45, 5974-5978 (2006). https://doi.org/10.1002/anie.200601878
- N. S. Bobbitt, M. L. Mendonca, A. J. Howarth, T. Islamoglu, J. T. Hupp, O. K. Farha, and R. Q. Snurr, Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents, Chem. Soc. Rev., 46, 3357-3385 (2017). https://doi.org/10.1039/C7CS00108H
- R. S. Vemuri, P. D. Armatis, J. R. Bontha, B. P. McGrail, and R. K. Motkuri, An overview of detection and neutralization of chemical warfare agents using metal organic frameworks, J. Bioterror. Biodef., 6: 137 (2015)
- A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nat. Rev. Mater., 1, 15018-15032 (2016). https://doi.org/10.1038/natrevmats.2015.18
- H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276-279 (1999). https://doi.org/10.1038/46248
-
R. Zou, R. Zhong, S. Han, H. Xu, A. K. Burrell, N. Henson, J. L. Cape, D. D. Hickmott, T. V. Timofeeva, T. E. Larson, and Y. Zhao, A porous metal-organic replica of
${\alpha}-PbO_2$ for capture of nerve agent surrogate, J. Am. Chem. Soc., 132, 17996-17999 (2010). https://doi.org/10.1021/ja101440z - S. Sabale, J. Zheng, R. S. Vemuri, X. Y. Yu, B. P. McGrail, and R. K. Motkuri, Recent advances in metal-organic frameworks for heterogeneous catalyzed organic transformations, Synth. Catal., 1, 1-8 (2016).
- G. W. Peterson and G. W. Wagner, Detoxification of chemical warfare agents by CuBTC, J. Porous Mater., 21, 121-126 (2014). https://doi.org/10.1007/s10934-013-9755-6
- S. Wang, L. Bromberg, H. Schreuder-Gibson, and T. A. Hatton, Organophophorous ester degradation by chromium(III) terephthalate metal-organic framework (MIL-101) chelated to N,N-dimethylaminopyridine and related aminopyridines, ACS Appl. Mater. Interfaces, 5, 1269-1278 (2013). https://doi.org/10.1021/am302359b
- Y. Liu. S. Y. Moon, J. T. Hupp, and O. K. Farha, Dual-function metal-organic framework as a versatile catalyst for detoxifying chemical warfare agent simulants, ACS. Nano, 9, 12358-12364 (2015). https://doi.org/10.1021/acsnano.5b05660
- Y. Liu, A. J. Howarth, J. T. Hupp, and O. K. Farha, Selective photooxidation of a mustard-gas simulant catalyzed by a porphyrinic metal-organic framework, Angew. Chem. Int. Ed., 54, 9001-9005 (2015). https://doi.org/10.1002/anie.201503741
- P. Li, R. C. Klet, S. Y. Moon, T. C. Wang, P. Deria, A. W. Peters, B. M. Klahr, H. J. Park, S. S. Al-Juaid, J. T. Hupp, and O. K. Farha, Synthesis of nanocrystals of Zr-based metal-organic frameworks with csq-net: Significant enhancement in the degradation of a nerve agent simulants, Chem. Commun., 51, 10925-10928 (2015). https://doi.org/10.1039/C5CC03398E
- J. E. Mondloch, M. J. Katz, W. C. Isley III, P. Ghosh, P. Liao, W. Bury, G. W. Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer, J. T. Hupp, and O. K. Farha, Destruction of chemical warfare agents using metal-organic frameworks, Nat. Mater., 14, 512-516 (2015). https://doi.org/10.1038/nmat4238
- R. J. Drout, L. Robison, Z. Chen, T. Islamoglu, and O. K. Farha, Zirconium metal-organic frameworks for organic pollutant adsorption, Trends Chem., 1, 304-317 (2019). https://doi.org/10.1016/j.trechm.2019.03.010
- S. Y. Moon, Y. Liu, T. T. Hupp, and O. K. Farha, Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework, Angew. Chem., Int. Ed., 54, 6795-6799 (2015). https://doi.org/10.1002/anie.201502155
-
M. J. Katz, S. Y. Moon, J. E. Mondloch, M. H. Beyzavi, C. J. Stephenson, J. T. Hupp, and O. K. Farha, Exploiting parameter space in MOFs: A 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-
$NH_2$ , Chem. Sci., 6, 2286-2291 (2015). https://doi.org/10.1039/C4SC03613A - J. Zhao, D. T. Lee, R. W. Yaga, M. G. Hall, H. F. Barton, I. R. Woodward, C. J. Oldham, H. J. Walls, G. W. Peterson, and G. N. Parsons, Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs, Angew. Chem. Int. Ed., 55, 13224-13228 (2016). https://doi.org/10.1002/anie.201606656
-
S. Y. Moon, G. W. Wagner, J. E. Mondloch, G. W. Peterson, G. J. B. DeCoste, J. T. Hupp, and O. K. Farha, Effective, facile, and selective hydrolysis of the chemical warfare agent VX using
$Zr_6$ -based metal-organic frameworks, Inorg. Chem., 54, 10829-10833 (2015). https://doi.org/10.1021/acs.inorgchem.5b01813 -
M. C. de Koning, M. van Grol, and T. Breijaert, Degradation of paraoxon and the chemical warfare agents VX, tabun, and soman by the metal-organic frameworks UiO-66-
$NH_2$ , MOF-808, NU-1000, and PCN-777, Inorg. Chem., 56, 11804-11809 (2017). https://doi.org/10.1021/acs.inorgchem.7b01809 - T. Islamoglu, A. Atilgan, S. Y. Moon, G. W. Peterson, J. B. DeCoste, M. Hall, J. T. Hupp, and O. K. Farha, Cerium(IV) vs zirconium(IV) based metal-organic frameworks for detoxification of a nerve agent, Chem. Mater., 29, 2672-2675 (2017). https://doi.org/10.1021/acs.chemmater.6b04835
- H. Shigekawa, M. Ishida, K. Miyake, R. Shioda, Y. Iijima, T. Imai, H. Takahashi, J. Sumaoka, and M. Komiyama, Extended X-ray absorption fine structure study on the cerium(IV)-induced DNA hydrolysis: Implication to the roles of 4f orbitals in the catalysis, Appl. Phys. Lett., 74, 460-462 (1999). https://doi.org/10.1063/1.123036
- M. J. Katz, J. E. Mondloch, R. K. Totten, J. K. Park, S. T. Nguyen, O. K. Farha, and J. T. Hupp, Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants, Angew. Chem. Int. Ed., 53, 497-501 (2013); Angew. Chem., 126, 507-511 (2014). https://doi.org/10.1002/anie.201307520
-
R. K. Totten, Y. S. Kim, M. H. Weston, O. K. Farha, J. T. Hupp, and S. T. Nguyen, Enhanced catalytic activity through the tuning of micropore environment and supercritical
$CO_2$ processing: Al(porphyrin)-based porous organic polymers for the degradation of a nerve agent simulant, J. Am, Chem. Soc., 135, 11720-11723 (2013). https://doi.org/10.1021/ja405495u - A. Pankajakshan, M. Sinha, A. A. Ohja, and S. Mandal, Water-stable nanoscale zirconium-based metal-organic frameworks for the effective removal of glyphosate from aqueous media, ACS Omega, 3, 7832-7839 (2018). https://doi.org/10.1021/acsomega.8b00921
- Q. Yang, J. Wang, X. Chen, W. Yang, H. Pei, N. Hu, Z. Li, Y. Suo, T. Li, and J. Wang, The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent, J. Mater. Chem. A, 6, 2184-2192 (2018). https://doi.org/10.1039/C7TA08399H
- S. Y. Moon, E. Proussaloglou, G. W. Peterson, J. B. DeCoste, M. G. Hall, A. J. Howarth, J. T. Hupp, and O. K. Farha, Detoxification of chemical warfare agents using a Zr6-based metal-organic framework/polymer mixture, Chem. Eur. J., 22, 14864-14868 (2016). https://doi.org/10.1002/chem.201603976
-
M. K. Kim, S. H. Kim, M. G. Park, S. G. Ryu, and H. S. Jung, Degradation of chemical warfare agents over cotton fabric functionalized with UiO-66-
$NH_2$ , RSC Adv., 8, 41633-41638 (2018). https://doi.org/10.1039/C8RA06805D - E. Lopez-Maya, C. Montoro, L. M. Rodriguez-Albelo, S. D. A. Cervantes, A. A. Lozano-Perez, J. L. Cenis, E. Barea, and J. A. R. Navarro, Textile metal-organic framework composites as self-detoxifying filters for chemical warfare agents, Angew. Chem. Int. Ed., 54, 6790-6794 (2015). https://doi.org/10.1002/anie.201502094
- R. Gil-San-Millan, E. Lopez-Maya, M. Hall, N. M. Padial, G. W. Peterson, J. B. DeCoste, L. M. Rodriguez-Albelo, J. E. Oltra, E. Barea, and J A. R. Navarro, Chemical warfare agents detoxification properties of zirconium metal-organic frameworks by synergistic incorporation of nucleophilic and basic sites, ACS Appl. Mater. Interfaces, 9, 23967-23973 (2017). https://doi.org/10.1021/acsami.7b06341
Cited by
- 구아니딘화 폴리에틸렌이민이 처리된 폴리프로필렌 부직포의 군사용 화학 작용제 제독 특성 vol.33, pp.1, 2019, https://doi.org/10.5764/tcf.2021.33.1.1