DOI QR코드

DOI QR Code

Characteristic Evaluation of FA-Based Geopolymer with PLA Fiber

PLA 섬유를 가진 다공성 플라이애시 기반 지오폴리머의 특성 평가

  • 권성준 (한남대학교 토목환경공학과) ;
  • 황상현 (한남대학교 토목환경공학과) ;
  • 조영근 ((재)한국건설생활환경시험연구원 여수지소) ;
  • 김태상 ((재)한국건설생활환경시험연구원 건설기술연구센터) ;
  • 문은진 ((재)한국건설생활환경시험연구원 건설기술연구센터)
  • Received : 2019.03.14
  • Accepted : 2019.07.12
  • Published : 2019.09.30

Abstract

Regarding physical absorption mechanism for fine particles(Dust), internal pore-bridging is a major parameter in porous media. In this paper, internal bridging pore system is invented through FA-based geopolymer and incorporated PLA (Polylactic Acid) fiber with biodegradability. With various mix proportions, compressive strength over 20MPa is obtained but PLA is little dissolved in the condition of NaOH 5mole and $30^{\circ}C$ of temperature, which was found that temperature rising accelerates PLA solubility. Within 24hours, beads type PLA is completely dissolved under $90{\sim}130^{\circ}C$ and NaOH 5~12mole of alkali. In room condition, geo-polymerization is limitedly occurs so that the internal pore after PLA dissolution is thought to be effective to absorption and storage of fine particles.

미세먼지의 물리적 흡착기구에서 다공질 매체의 공극구조 연결성은 매우 중요한 인자이다. 본 연구에서는 플라이애시 기반의 지오폴리머를 기본 매체로 하고, 내부에 유기 생분해성 섬유재를 매립하여 강알칼리에 용해한 뒤 내부 연결 공극을 가지는 조직을 제조하였다. 다양한 배합을 통하여 압축강도는 20MPa 이상을 확보하였지만 NaOH 5mole 및 $30^{\circ}C$에서는 PLA가 거의 용해되지 않았으며, 온도의 증가에 따라 PLA 용해속도는 급격히 증가하였다. 비즈 타입의 PLA 섬유가 온도 $90{\sim}130^{\circ}C$ 및 NaOH 5~12mole 조건에서 24시간 이내에 모두 용해하는 것을 확인하였는데, 상온에서의 FA 기반 지오폴리머의 경우 반응성이 거의 없으므로 용해된 섬유내의 공간은 유효할 것으로 판단된다. 이러한 내부 공극연계구조는 미세먼지의 흡착 및 저장에 유리할 것으로 예상된다.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. Baker, R.W. (2001). Membrane technology, Encyclopedia of Polymer Science and Technology, 3.
  2. Bakharev, T. (2005). Geopolymeric materials prepared using Class F fly ash and elevated temperature curing, Cement and Concrete Research, 35(6), 1224-1232. https://doi.org/10.1016/j.cemconres.2004.06.031
  3. Cho, Y.K., Jung, S.H. (2013). The application of fly ash based binders with alkali activator, Magazine of RCR, 8(2), 17-21. https://doi.org/10.14190/MRCR.2013.8.2.017
  4. Davidovits, J. (1991). Geopolymers : inorganic polymeric new materials, Journal of Thermal Analysis and Calorimetry, 37(8), 1633-1656. https://doi.org/10.1007/BF01912193
  5. Jun, Y.B., Oh, J.E. (2015). Microstructure and strength of class F fly ash based geopolymer containing sodium sulfate as an additive, Journal of the Korea Concrete Institute, 27(4), 443-450. https://doi.org/10.4334/JKCI.2015.27.4.443
  6. Kovalchuk, G., Ferndez-Jimez, A., Palomo, A. (2007). Alkaliactivated fly ash : effect of thermal curing conditions on mechanical and microstructural development - Part II, Fuel, 86(3), 315-322. https://doi.org/10.1016/j.fuel.2006.07.010
  7. Krivenko, P. (2017). Why alkaline activation - 60 years of the theory and practice of alkali-activated materials, Journal of Ceramic Science and Technology, 8(3), 323-334.
  8. Lee, S.H., Kim, H.J., Lim, Y.J., Kim, D.H., Park, B.S. (2019). Effect of $Na_2SO_4$ on autogenous healing in initial cracking of blast furnace slag cement paste, Journal of the Korea Concrete Institute, 31(3), 261-267. https://doi.org/10.4334/JKCI.2019.31.3.261
  9. Ma, Y., Hu, J., Ye, G. (2013). The pore structure and permeability of alkali activated fly ash, Fuel, 104, 771-780. https://doi.org/10.1016/j.fuel.2012.05.034
  10. Rasoulia, H.R., Golestani-fard, F., Mirhabibia, A.R., Nasab, G.M., Mackenzie, K.J.D., Shahraki, M.H. (2015). Fabrication and properties of micro porous metakaolin-based geopolymer bodies with poly lactic acid(PLA) fibers as pore generators, Ceramics International, 41(6), 7872-7880. https://doi.org/10.1016/j.ceramint.2015.02.125