DOI QR코드

DOI QR Code

차세대 전력반도체 소자 및 패키지 접합 기술

Recent Overview on Power Semiconductor Devices and Package Module Technology

  • 김경호 (서울과학기술대학교 나노IT디자인융합대학원) ;
  • 좌성훈 (서울과학기술대학교 나노IT디자인융합대학원)
  • Kim, Kyoung-Ho (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology) ;
  • Choa, Sung-Hoon (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology)
  • 투고 : 2019.08.24
  • 심사 : 2019.09.27
  • 발행 : 2019.09.30

초록

In these days, importance of the power electronic devices and modules keeps increasing due to electric vehicles and energy saving requirements. However, current silicon-based power devices showed several limitations. Therefore, wide band gap (WBG) semiconductors such as SiC, GaN, and $Ga_2O_3$ have been developed to replace the silicon power devices. WBG devices show superior performances in terms of device operation in harsh environments such as higher temperatures, voltages and switching speed than silicon-based technology. In power devices, the reliability of the devices and module package is the critically important to guarantee the normal operation and lifetime of the devices. In this paper, we reviewed the recent trends of the power devices based on WBG semiconductors as well as expected future technology. We also presented an overview of the recent package module and fabrication technologies such as direct bonded copper and active metal brazing technology. In addition, the recent heat management technologies of the power modules, which should be improved due to the increased power density in high temperature environments, are described.

키워드

참고문헌

  1. N. Dharmarasu, "AlGaN/GaN HEMT grown on SiC with carbon doped GaN buffer by MOCVD", Electron Devices Technology and Manufacturing Conference(EDTM), 434 (2019).
  2. S. S. Moosavi, A. Kazemi, and H. Akbari, "A comparison of various open-circuit fault detection methods in the IGBTbased DC/AC inverter used in electric vehicle", Engineering Failure Analysis, 96, 223 (2019). https://doi.org/10.1016/j.engfailanal.2018.09.020
  3. X. Liang, S. Srdic, J. Won, E. Aponte, K. Booth, and S. Lukic, "A 12.47 kV Medium Voltage Input 350 kW EV Fast Charger using 10 kV SiC MOSFET", 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 581 (2019).
  4. J. W. Yoon, J. H. Bang, Y. H. Ko, S. H. Yoo, J. K. Kim, and C. W. Lee, "Power Module Packaging Technology with Extended Reliability for Electric Vehicle Applications", J. Microelectron. Packag. Soc., 21(4), 1 (2014). https://doi.org/10.6117/kmeps.2014.21.4.001
  5. P. Roussel, "SiC Market and Industry Update", International SiC Power", Electronics Applications Workshop (ISiCPEAW), Sweden (2011).
  6. K. Shenai, M. Dudley, and R.F. Davis, "Current status and emerging trends in wide bandgap (WBG) semiconductor power switching devices", ECS J. Solid State Science and Technology, 2(8), 3055 (2013). https://doi.org/10.1149/2.012308jss
  7. F. Roccaforte, A. Frazzetto, G. Greco, F. Giannazzo, P. Fiorenza, R. L. Nigro, M. Saggio, M. Leszczynski, P. Pristawko, and V. Raineri, "Critical issues for interfaces to p-type SiC and GaN in power devices", Applied Surface Science, 258(21), 8324 (2012). https://doi.org/10.1016/j.apsusc.2012.03.165
  8. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, and J. Rebollo, "A survey of wide bandgap power semiconductor devices," IEEE Transactions on Power Electronics, 29(5), 2155 (2014). https://doi.org/10.1109/TPEL.2013.2268900
  9. S. J. Pearton, J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, "A review of $Ga_2O_3$ materials, processing, and device", Applied Physics Reviews, 5(1), 011301 (2018). https://doi.org/10.1063/1.5006941
  10. D. J. Spry, P. G. Neudeck, L. Chen, D. Lukco, C. W. Chang, and G. M. Beheim, "Prolonged 500oC demonstration of 4HSiC JFET ICs with two-level interconnect", IEEE Electron Device Letters, 37(5), 625 (2016). https://doi.org/10.1109/LED.2016.2544700
  11. T. P. Chow, "Wide bandgap semiconductor power devices for energy efficient systems", Proc. IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 402 (2015).
  12. S. Dimitrijev, and P. Jamet, "Advances in SiC power MOSFET technology", Microelectronics Reliability, 43(2), 225 (2003). https://doi.org/10.1016/S0026-2714(02)00270-6
  13. F. Zimmermann, G.Gartner, H. Strater, C. Roder, M. Barchuk, D. Bastin, P. Hofmann, M. Krupinski, T. Mikolajick, J. Heitmann, and F. C. Beyer, "Green coloring of GaN single crystals introduced by Cr impurity", J. Luminescence, 207, 507 (2019). https://doi.org/10.1016/j.jlumin.2018.11.044
  14. T. Kimura, S. Sato, K. Kataoka, T. Morikawa, and D. Nakamura, "Self-assembled single-crystalline GaN having a bimodal meso/macropore structure to enhance photoabsorption and photocatalytic reactions", ACS applied materials & interfaces, 11(4), 4233 (2019). https://doi.org/10.1021/acsami.8b18088
  15. S. S. Kang, "Advanced cooling for power electronics", IEEE International conference on integrated power electronics systems (CIPS), 1 (2012).
  16. M. H. Roh, H. Nishikawa, and J. P. Jung, "Trasient Liquid Phase bonding for Power Semiconductor", J. Microelectron. Packag. Soc., 24(1), 27 (2017). https://doi.org/10.6117/kmeps.2017.24.1.027
  17. F. Ren, J. C. Yang, C. Fares, and S. J. Pearton, "Device processing and junction formation needs for ultra-high power $Ga_2O_3$ electronics", MRS Communications, 9(1), 77 (2019). https://doi.org/10.1557/mrc.2019.4
  18. J. Yang, C. Fares, R. Elhassani, M. Xian, F. Ren, S. J. Pearton, M. Tadjer, and A. Kuramata, "Reverse breakdown in large area, field-plated, vertical ${\beta}-Ga_2O_3$ rectifiers", ECS Journal of Solid State Science and Technology, 8(7), 3159 (2019). https://doi.org/10.1149/2.0211907jss
  19. J. K. Mun, K. Cho, W. Chang, H. -W. Jung, and J. Do, "2.32 kV Breakdown voltage lateral ${\beta}-Ga_2O_3$ MOSFETs with source-connected field plate", ECS Journal of Solid State Science and Technology, 8(7), 3079 (2019). https://doi.org/10.1149/2.0151907jss
  20. K. Chu, Y. Sohn, and C. Moona, "A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding", Scripta Materialia, 109, 113 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.032
  21. H. Tatsumi, A. Lis, T. Monodane, H. Yamaguchi, Y. Kashiba, and A. Hirose, "Transient liquid phase sintering using Copper-Solder-Resin composite for high-temperature power modules", IEEE Electronic Components and Technology Conference (ECTC), 564 (2018).
  22. H. Tatsumi, A. Lis, H. Yamaguchi, T. Matsuda, T. Sano, Y. Kashiba, and A. Hirose, "Evolution of transient liquid-phase sintered Cu-Sn skeleton microstructure during thermal aging", Applied Sciences, 9(1), 157 (2019). https://doi.org/10.3390/app9010157
  23. D. Mu, H. Huang, S. D. McDonald, and K. Nogita, "Creep and mechanical properties of $Cu_6Sn_5$ and $(Cu,Ni)_6Sn_5$ at elevated temperatures", Journal of electronic materials, 42(2), 304 (2013). https://doi.org/10.1007/s11664-012-2227-y
  24. H. Feng, J. Huang, J. Yang, S. Zhou, R. Zhang, and S. Chen, "A transient liquid phase sintering bonding process using nickel-tin mixed powder for the new generation of high-temperature power devices", Journal of Electronic Materials, 46(7), 4152 (2017). https://doi.org/10.1007/s11664-017-5357-4
  25. T. Ishizaki, M. Usui, and Y. Yamada, "Thermal cycle reliability of Cu-nanoparticle joint", Microelectronics Reliability, 55(9-10), 1861 (2015). https://doi.org/10.1016/j.microrel.2015.07.039
  26. M. Ali, K. M. Knowles, P. M. Mallinson, and J. A. Fernie, "Microstructural evolution and characterisation of interfacial phases in $Al_2O_3/Ag-Cu-Ti/Al_2O_3$ braze joints", Acta Materialia, 96, 143 (2015). https://doi.org/10.1016/j.actamat.2015.05.048
  27. I. Krasniy, A. Berkin, G. Minskiy, A. Denisova, and S. Kumacheva, "Research of the DBC joining interface", International Forum on Strategic Technology (IFOST), 185 (2016).
  28. A. Kar, and A. K. Ray, "Ceramic-Metal Joining Using Active Filler Alloy-An In-Depth Electron Microscopic Study", The Transmission Electron Microscope, 317 (2012).
  29. J. H. Harris, "Sintered aluminum nitride ceramics for highpower electronic applications", The Journal of The Minerals, Metals & Materials Society(TMS), 50(6), 56 (1998). https://doi.org/10.1007/s11837-998-0463-7
  30. L. Sim, S. R. Ramanan, H. Ismail, K. N. Seetharamu, and T. J. Goh, "Thermal characterization of $Al_2O_3$ and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes", Thermochimica acta, 430(1-2), 155 (2005). https://doi.org/10.1016/j.tca.2004.12.024
  31. X. Huang, P. Jiang, and T. Tanaka, "A review of dielectric polymer composites with high thermal conductivity", IEEE Electrical Insulation magazine, 27(4), 8 (2011). https://doi.org/10.1109/MEI.2011.5954064
  32. K. Hirao, Y. Zhou, H. Hyuga, T. Ohji, and D. Kusano, "High thermal conductivity silicon nitride ceramics", Journal of the Korean Ceramic Society, 49(4), 380 (2012). https://doi.org/10.4191/kcers.2012.49.4.380
  33. Y. Wang, S. Jones, A. Dai, and G. Liu, "Reliability enhancement by integrated liquid cooling in power IGBT modules for hybrid and electric vehicles", Microelectronics Reliability, 54(9-10), 1911 (2014). https://doi.org/10.1016/j.microrel.2014.07.037
  34. A. Uhlemann, and T. Fath, "Investigation on AlCu clad base plates and a new by-pass cooler concept for pin fin power modules", International Conference on Integrated Power Electronics Systems (CIPS), 256 (2014).
  35. C. Qian, A. M. Gheitaghy, J. Fan, H. Tang, B. Sun, H. Ye, and G. Zhang, "Thermal management on IGBT power electronic devices and modules", IEEE Access, 6, 12868 (2018). https://doi.org/10.1109/ACCESS.2018.2793300
  36. I. W. Suh, H. S. Jung, Y. H. Lee, Y. H. Kim, and S. H. Choa, "Heat dissipation technology of IGBT module package", J. Microelectron. Packag. Soc., 21(3), 7 (2014). https://doi.org/10.6117/kmeps.2014.21.3.007
  37. J. P. Gwinn, and P. L. Webb, "Performance and testing of thermal interface materials", Microelectronics Journal, 34(3), 215 (2003). https://doi.org/10.1016/S0026-2692(02)00191-X
  38. A. J. George, M. Breitenbach, J. Zipprich, M. Klingler, and M. Nowottnick, "Nonconchoidal Fracture in Power Electronics Substrates due to Delamination in Baseplate Solder Joints", IEEE Electronic System-Integration Technology Conference(ESTC), 1 (2018).
  39. "Material Properties Charts", Ceramic Industry Magazine (2013) from https://www.ceramicindustry.com