DOI QR코드

DOI QR Code

Solution-Processed Fluorine-Doped Indium Gallium Zinc Oxide Channel Layers for Thin-Film Transistors

용액공정용 불소 도핑된 인듐 갈륨 징크 산화물 반도체의 박막 트랜지스터 적용 연구

  • Jeong, Sunho (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University)
  • 정선호 (경희대학교 정보전자신소재공학과)
  • Received : 2019.08.19
  • Accepted : 2019.09.13
  • Published : 2019.09.30

Abstract

In this study, we have developed solution-processed, F-doped In-Ga-Zn-O semiconductors and investigated their applications to thin-film transistors. In order for forming the appropriate channel layer, precursor solutions were formulated by dissolving the metal salts in the designated solvent and an additive, ammonium fluoride, was incorporated additionally as a chemical modifier. We have studied thermal and chemical contributions by a thermal annealing and an incorporation of chemical modifier, from which it was revealed that electrical performances of the thin-film transistors comprising the channel layer annealed at a low temperature can be improved significantly along with an addition of ammonium fluoride. As a result, when the 20 mol% fluorine was incorporated into the semiconductor layer, electrical characteristics were accomplished with a field-effect mobility of $1.2cm^2/V{\cdot}sec$ and an $I_{on}/_{off}$ of $7{\times}10^6$.

본 논문은 용액공정용 불소 도핑된 인듈 갈륨 징크 산화물 반도체를 연구하였으며, 박막 트랜지스터 적용 가능성을 확인하였다. 용액형 산화물 반도체를 형성하기 위해, 금속염 전구체 기반 용액을 제조하였으며, 추가적인 불소 도핑을 유도하기 위해 화학적 첨가제로서 암모늄 플로라이드를 이용하였다. 열처리 온도 및 불소 도핑양에 따른 전기적 물성을 고찰함으로서, 300도 저온 열처리를 통해 제조된 산화물 반도체층의 전기적 특성을 향상시켰다. 20 mol% 불소를 도핑하는 경우, $1.2cm^2/V{\cdot}sec$의 이동도 및 $7{\times}10^6$의 점멸비 특성이 발현 가능함을 확인하였다.

Keywords

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors", Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  2. S. Jeong, and J. Moon, "Low-Temperature, Solution-Processed Metal Oxide Thin Film Transistors", J. Mater. Chem., 22, 1243 (2012). https://doi.org/10.1039/C1JM14452A
  3. E. Fortunato, P. Barquinha, and R. Marins, "Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances", Adv. Mater., 24, 2945 (2012). https://doi.org/10.1002/adma.201103228
  4. J. S. Park, W.-J. Maeng, H.-S. Kim, and J.-S. Park, "Review of Recent Developments in Amorphous Oxide Semiconductor Thin-Film Transistor Devices", Thini Solid Films, 520, 1679 (2012). https://doi.org/10.1016/j.tsf.2011.07.018
  5. J.-Y. Oh, J. Park, S.-Y. Kang, C.-S. Hwang, and H.-K. Shim, "Room Temperature Fabrication of ZnO Nanorod Films: Synthesis and Application as a Channel Layer of Transparent Thin Film Transistors", Chem. Commun., 45, 4545 (2009).
  6. T. V. Richer, F. Stetzl, J. Schulz-Gericke, B. Kerscher, U. Würfel, M. Niggemann, and S. Ludwigs, "Room temperature Vacuum-induced Ligand Removal and Patterning of ZnO Nanoparticles: from Semiconducting Films Towards Printed Electronics", J. Mater. Chem., 20, 874 (2010). https://doi.org/10.1039/B916778C
  7. G. R. Hong, S. S. Lee, Y. Jo, M. J. Choi, Y. C. Kang, B.-H. Ryu, K.-B. Chung, Y. Choi, and S. Jeong, "Extremely Low-Cost, Scalable Oxide Semiconductors Employing Poly(acrylic acid)-Decorated Carbon Nanotubes for Thin-Film Transistor Applications", ACS Appl. Mater. Interfaces., 8, 29858 (2016). https://doi.org/10.1021/acsami.6b08950
  8. S. J. Kim, A. R. Song, S. S. Lee, S. Nahm, Y. Choi, and K.- B. Chung, S. Jeong, "Independent Chemical/Physical Role of Combustive Exothermic Heat in Solution-Processed Metal Oxide Semiconductors for Thin-Film Transistors", J. Mater. Chem. C., 3, 1457 (2015). https://doi.org/10.1039/C4TC02408G
  9. S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, and T. J. Marks, "Role of Gallium Doping in Dramatically Lowering Amorphous-Oxide Processing Temperatures for Solution-Derived Indium Zinc Oxide Thin-Film Transistors", Adv. Mater., 22, 1346 (2010). https://doi.org/10.1002/adma.200902450