Strong Roman Domination in Grid Graphs

Xue-Gang Chen
Department of Mathematics, North China Electric Power University, Beijing 102206, China
e-mail : gxcxdm@163.com
Moo Young Sohn*
Department of Mathematics, Changwon National University, Changwon 51140, Korea
e-mail: mysohn@changwon.ac.kr

Abstract. Consider a graph G of order n and maximum degree Δ. Let $f: V(G) \rightarrow$ $\left\{0,1, \cdots,\left\lceil\frac{\Delta}{2}\right\rceil+1\right\}$ be a function that labels the vertices of G. Let $B_{0}=\{v \in V(G)$: $f(v)=0\}$. The function f is a strong Roman dominating function for G if every $v \in B_{0}$ has a neighbor w such that $f(w) \geq 1+\left\lceil\frac{1}{2}\left|N(w) \cap B_{0}\right|\right\rceil$. In this paper, we study the bounds on strong Roman domination numbers of the Cartesian product $P_{m} \square P_{k}$ of paths P_{m} and paths P_{k}. We compute the exact values for the strong Roman domination number of the Cartesian product $P_{2} \square P_{k}$ and $P_{3} \square P_{k}$. We also show that the strong Roman domination number of the Cartesian product $P_{4} \square P_{k}$ is between $\left\lceil\frac{1}{3}\left(8 k-\left\lfloor\frac{k}{8}\right\rfloor+1\right)\right\rceil$ and $\left\lceil\frac{8 k}{3}\right\rceil$ for $k \geq 8$, and that both bounds are sharp bounds.

1. Introduction

Graph theory terminology not presented here can be found in [1]. Let $G=$ (V, E) be a graph with $|V|=n$. The degree, neighborhood and closed neighborhood of a vertex v in the graph G are denoted by $d_{G}(v), N_{G}(v)$ and $N_{G}[v]=N_{G}(v) \cup\{v\}$, respectively. If the graph G is clear from context, we simply write $d(v), N(v)$ and $N[v]$, respectively. The minimum degree and maximum degree of the graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. The diameter $\operatorname{diam}(G)$ of a connected graph G is the maximum distance between two vertices of G. The graph induced by $S \subseteq V$ is denoted by $G[S]$. A path on n vertices is denoted by P_{n}.

* Corresponding Author.

Received January 2, 2019; revised September 3, 2019; accepted September 19, 2019. 2010 Mathematics Subject Classification: 05C69, 05C38.
Key words and phrases: Roman domination number, strong Roman domination number, grid.

For two graphs G_{1} and G_{2}, the Cartesian product $G_{1} \square G_{2}$ is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$, where vertex $\left(u_{1}, v_{1}\right)$ is adjacent to vertex $\left(u_{2}, v_{2}\right)$ if and only if either $u_{1}=u_{2}$ and $v_{1} v_{2} \in E\left(G_{2}\right)$ or $v_{1}=v_{2}$ and $u_{1} u_{2} \in E\left(G_{1}\right) . G=P_{m} \square P_{k}$ is called a grid graph.

Let $\left\{v_{i j} \mid 1 \leq i \leq m, 1 \leq j \leq k\right\}$ be the vertex set of $G=P_{m} \square P_{k}$ so that the subgraph induced by $\mathcal{R}_{i}=\left\{v_{i 1}, v_{i 2}, \cdots, v_{i k}\right\}$ is isomorphic to the path P_{k} for each $1 \leq i \leq m$ and the subgraph induced by $\mathcal{C}_{j}=\left\{v_{1 j}, v_{2 j}, \cdots, v_{m j}\right\}$ is isomorphic to the path P_{m} for each $1 \leq j \leq k$.

A set $S \subseteq V$ in a graph G is called a dominating set if $N[S]=V$. The domination number $\gamma(G)$ equals the minimum cardinality of a dominating set in G. A dominating set of G with cardinality $\gamma(G)$ is called a γ-set of G.

Let $f: V \rightarrow\{0,1,2\}$ be a function having the property that for every vertex $v \in$ V with $f(v)=0$, there exists a neighbor $u \in N(v)$ with $f(u)=2$. Such a function is called a Roman dominating function. The weight of a Roman dominating function is the sum $f(V)=\sum_{v \in V} f(v)$. The minimum weight of a Roman dominating function on G is called the Roman domination number of G and is denoted $\gamma_{R}(G)$. Roman domination was defined and discussed by Stewart [4] in 1999. It was developed by ReVelle and Rosing [3] in 2000 and Cockayne et al. [2] in 2004. In order to deal with multiple simultaneous attacks, Álvarez-Ruiz et al. [1] in 2017 initiated the study of a new parameter related to Roman dominating function, which is called strong Roman domination.

Consider a graph G of order n and maximum degree Δ. Let $f: V(G) \rightarrow$ $\left\{0,1, \cdots,\left\lceil\frac{\Delta}{2}\right\rceil+1\right\}$ be a function that labels the vertices of G. Let $B_{0}=\{v \in V$: $f(v)=0\}$. Then f is a strong Roman dominating function for G, if every $v \in B_{0}$ has a neighbor w, such that $f(w) \geq 1+\left\lceil\frac{1}{2}\left|N(w) \cap B_{0}\right|\right\rceil$. The weight of a strong Roman dominating function is the sum $f(V)=\sum_{v \in V} f(v)$. The minimum weight of a strong Roman dominating function on G is called the strong Roman domination number of G and is denoted $\gamma_{S t R}(G)$. A strong Roman dominating function of G with weight $\gamma_{S t R}(G)$ is called a $\gamma_{S t R}$-function of G. For any $S \subseteq V$, define $f(S)=\sum_{v \in S} f(v)$. Let f be a $\gamma_{S t R}$-function of G. Let $B_{2}=\{v \in V: f(v) \geq 2\}$. For any $v \in B_{0}$, there exists a vertex $u \in B_{2}$ such that $v u \in E(G)$. We say that v is dominated by u or by B_{2}. If f is a strong Roman dominating function of G, then every vertex in B_{0} is dominated by some vertex in B_{2}.

In this paper, we study the bounds on strong Roman domination numbers of the Cartesian product $P_{m} \square P_{k}$ of paths P_{m} and paths P_{k}. Exact values for the strong Roman domination number of the Cartesian product $P_{2} \square P_{k}$ and $P_{3} \square P_{k}$ are found, and it is shown that for the strong Roman domination number of the Cartesian product $P_{4} \square P_{k}$ this number is between $\left\lceil\frac{1}{3}\left(8 k-\left\lfloor\frac{k}{8}\right\rfloor+1\right)\right\rceil$ and $\left\lceil\frac{8 k}{3}\right\rceil$ for $k \geq 8$, and both bounds are sharp bounds.

2. Bounds of Strong Roman Domination Number of $P_{m} \square P_{k}$

In this section, we present upper and lower bounds on the strong Roman domination number of the Cartesian product of paths P_{m} and paths P_{k}.

Observation 2.1. For any positive integers m, k such that $k \equiv 0(\bmod 3)$, $\gamma_{S t R}\left(P_{m} \square P_{k}\right) \leq \frac{2 m k}{3}$.
Proof. Let $G=P_{m} \square P_{k}$, where $k=3 t$ for a positive integer t. Let $V_{2}=\left\{v_{i j} \mid 1 \leq\right.$ $i \leq m, j=3 l-1,1 \leq l \leq t\}, V_{1}=\varnothing$ and $V_{0}=V(G) \backslash\left(V_{1} \cup V_{2}\right)$. Clearly, $\left(V_{0}, V_{1}, V_{2}\right)$ is a partition of $V(G)$. Define f on $V(G)$ by $f(v)=i$ for any $v \in V_{i}$, where $0 \leq i \leq 2$. It is obvious that f is a strong Roman dominating function of G. Therefore, $\gamma_{S t R}(G) \leq|f(V(G))|=\frac{2 m k}{3}$.
Observation 2.2. For any positive integers m, k such that $k \equiv 1(\bmod 3)$, $\gamma_{S t R}\left(P_{m} \square P_{k}\right) \leq \frac{m(2 k+1)}{3}$.
Proof. Let $G=P_{m} \square P_{k}$, where $k=3 t+1$ for a positive integer t. Let $V_{2}=\left\{v_{i j} \mid 1 \leq i \leq m, j=3 l-1,1 \leq l \leq t\right\}, V_{1}=\left\{v_{i k} \mid 1 \leq i \leq m\right\}$ and $V_{0}=V(G) \backslash\left(V_{1} \cup V_{2}\right)$. Clearly, $\left(V_{0}, V_{1}, V_{2}\right)$ is a partition of $V(G)$. Define f on $V(G)$ by $f(v)=i$ for any $v \in V_{i}$, where $0 \leq i \leq 2$. It is obvious that f is a strong Roman dominating function of G. Therefore, $\gamma_{S t R}(G) \leq|f(V(G))|=\frac{m(2 k+1)}{3}$.

Observation 2.3. For any positive integers m, k such that $k \equiv 2(\bmod 3)$, then

$$
\gamma_{S t R}\left(P_{m} \square P_{k}\right) \leq \begin{cases}\frac{m(4 k+1)}{6} & \text { if } m \equiv 0(\bmod 2) \\ \frac{m(4 k+1)+3}{6} & \text { if } m \equiv 1(\bmod 2)\end{cases}
$$

Proof. Let $G=P_{m} \square P_{k}$, where $k=3 t+2$ for a positive integer t. Suppose $m \equiv 0(\bmod 2)$. Let $V_{2}=\left\{v_{i j} \mid 1 \leq i \leq m, j=3 l-1,1 \leq l \leq t\right\} \cup\left\{v_{j k} \mid j=\right.$ $\left.4 l+1,0 \leq l \leq\left\lfloor\frac{m-1}{4}\right\rfloor\right\} \cup\left\{v_{j k} \mid j=4 l, 1 \leq l \leq\left\lfloor\frac{m}{4}\right\rfloor\right\}, V_{1}=\left\{v_{j(k-1)} \mid j=4 l+2,0 \leq\right.$ $\left.l \leq\left\lfloor\frac{m-1}{4}\right\rfloor\right\} \cup\left\{v_{j(k-1)} \mid j=4 l-1,1 \leq l \leq\left\lfloor\frac{m}{4}\right\rfloor\right\}$ and $V_{0}=V(G) \backslash\left(V_{1} \cup V_{2}\right)$. Clearly, $\left(V_{0}, V_{1}, V_{2}\right)$ is a partition of $V(G)$. Define f on $V(G)$ by $f(v)=i$ for any $v \in V_{i}$, where $0 \leq i \leq 2$. It is obvious that f is a strong Roman dominating function of G. Therefore, $\gamma_{S t R}(G) \leq f(V(G))=\frac{m(4 k+1)}{6}$.

Suppose that $m \equiv 1(\bmod 2)$. Let $V_{2}=\left\{v_{i j} \mid 1 \leq i \leq m, j=3 l-1,1 \leq l \leq\right.$ $t\} \cup\left\{v_{j k} \mid j=4 l+1,0 \leq l \leq\left\lfloor\frac{m-2}{4}\right\rfloor\right\} \cup\left\{v_{j k} \mid j=4 l, 1 \leq l \leq\left\lfloor\frac{m-1}{4}\right\rfloor\right\}, V_{1}=\left\{v_{j(k-1)} \mid j=\right.$ $\left.4 l+2,0 \leq l \leq\left\lfloor\frac{m-2}{4}\right\rfloor\right\} \cup\left\{v_{j(k-1)} \mid j=4 l-1,1 \leq l \leq\left\lfloor\frac{m-1}{4}\right\rfloor\right\} \cup\left\{v_{m(k-1)}, v_{m k}\right\}$ and $V_{0}=V(G) \backslash\left(V_{1} \cup V_{2}\right)$. Clearly, $\left(V_{0}, V_{1}, V_{2}\right)$ is a partition of $V(G)$. Define f on $V(G)$ by $f(v)=i$ for any $v \in V_{i}$, where $0 \leq i \leq 2$. It is obvious that f is a strong Roman dominating function of G. Therefore, $\gamma_{S t R}(G) \leq f(V(G))=\frac{m(4 k+1)+3}{6}$.
Lemma 2.4.([1]) Let G be a connected graph of order n. Then $\gamma_{S t R}(G) \geq\left\lceil\frac{n+1}{2}\right\rceil$.
By the following result, we improve the above result for a connected graph G with $\Delta(G) \leq 4$.

Theorem 2.5. Let G be a connected graph of order n with $\Delta(G) \leq 4$. Then $\gamma_{S t R}(G) \geq\left\lceil\frac{3 n}{5}\right\rceil$.
Proof. Let f be a $\gamma_{S t R}$-function of G, and let $B_{0}=\{w \in V(G) \mid f(w)=0\}$, $B_{1}=\{w \in V(G) \mid f(w)=1\}$ and $B_{2}=\{w \in V(G) \mid f(w) \geq 2\}$. Let $B_{2}^{i}=\{w \in$
$\left.B_{2}| | N(w) \cap B_{0} \mid=i\right\}$ for $i=1,2,3,4$. Let $B_{0}^{1}=\left\{w \in B_{0}| | N(w) \cap B_{2} \mid=1\right\}$ and $B_{0}^{2}=\left\{w \in B_{0}| | N(w) \cap B_{2} \mid \geq 2\right\}$. Clearly (B_{0}, B_{1}, B_{2}) is a partition of $V(G)$, $\left(B_{2}^{1}, B_{2}^{2}, B_{2}^{3}, B_{2}^{4}\right)$ is a partition of B_{2} and (B_{0}^{1}, B_{0}^{2}) is a partition of B_{0}. Hence, $n=\left|B_{0}\right|+\left|B_{1}\right|+\left|B_{2}\right|,\left|B_{2}\right|=\left|B_{2}^{1}\right|+\left|B_{2}^{2}\right|+\left|B_{2}^{3}\right|+\left|B_{2}^{4}\right|$ and $\left|B_{0}\right|=\left|B_{0}^{1}\right|+\left|B_{0}^{2}\right|$. Among all $\gamma_{S t R}$-function of G, let f be chosen so that $\left|B_{1}\right|$ is maximized.
Claim 1. $B_{2}^{1}=\emptyset$.
Proof. Suppose that $B_{2}^{1} \neq \emptyset$. Say $v \in B_{2}^{1}$ and $N(v) \cap B_{0}=\{u\}$. Define f^{\prime} on $V(G)$ by $f^{\prime}(x)=f(x)$ for $x \in V(G)-\{u, v\}, f^{\prime}(u)=1$ and $f^{\prime}(v)=1$. Obviously f^{\prime} is a $\gamma_{S t R}$-function of G with $\left|B_{1}\right|$ more than f, which is a contradiction.
Claim 2. $B_{2}^{3}=\emptyset$.
Proof. Suppose that $B_{2}^{3} \neq \emptyset$. Say $v \in B_{2}^{3}$ and $N(v) \cap B_{0}=\left\{u_{1}, u_{2}, u_{3}\right\}$. Define f^{\prime} on $V(G)$ by $f^{\prime}(x)=f(x)$ for $x \in V(G)-\left\{u_{1}, v\right\}, f^{\prime}\left(u_{1}\right)=1$ and $f^{\prime}(v)=2$. Obviously f^{\prime} is a $\gamma_{S t R^{\prime}}$-function of G with $\left|B_{1}\right|$ more than f, which is a contradiction.
Claim 3. Let $u \in B_{2}^{2}$. Then $N(u) \cap B_{0} \subseteq B_{0}^{1}$.
Proof. Say $N(u) \cap B_{0}=\left\{w_{1}, w_{2}\right\}$. Suppose that $w_{1} \notin B_{0}^{1}$. So $w_{1} \in B_{0}^{2}$. Define f^{\prime} on $V(G)$ by $f^{\prime}(x)=f(x)$ for $x \in V(G)-\left\{u, w_{2}\right\}, f^{\prime}(u)=1$ and $f^{\prime}\left(w_{2}\right)=1$. Obviously f^{\prime} is a $\gamma_{S t R^{-}}$-function of G with $\left|B_{1}\right|$ more than f, which is a contradiction.

By Claim 1, $\left|B_{2}\right|=\left|B_{2}^{2}\right|+\left|B_{2}^{4}\right|$. Let $E\left(B_{0}, B_{2}\right)$ denote the edge set between B_{0} and B_{2}. It is obvious that $\left|B_{0}^{1}\right|+2\left|B_{0}^{2}\right| \leq\left|E\left(B_{0}, B_{2}\right)\right| \leq 2\left|B_{2}^{2}\right|+4\left|B_{2}^{4}\right|$. So, $\left|B_{0}\right|+\left|B_{0}^{2}\right| \leq 2\left|B_{2}^{2}\right|+4\left|B_{2}^{4}\right|$. Hence, $n+\left|B_{0}^{2}\right| \leq\left|B_{1}\right|+3\left|B_{2}^{2}\right|+5\left|B_{2}^{4}\right|$. Hence

$$
\begin{align*}
\gamma_{S t R}(G) & =\left|B_{1}\right|+2\left|B_{2}^{2}\right|+3\left|B_{2}^{4}\right| \\
& =\frac{2}{3}\left(n+\frac{1}{2}\left|B_{1}\right|+2\left|B_{2}^{2}\right|+\frac{7}{2}\left|B_{2}^{4}\right|-\left|B_{0}\right|\right) \\
& \geq \frac{2}{3}\left(n+\left|B_{0}^{2}\right|+\frac{1}{2}\left(\left|B_{1}\right|-\left|B_{2}^{4}\right|\right)\right) . \tag{2.1}
\end{align*}
$$

and

$$
\begin{aligned}
\gamma_{S t R}(G) & =\left|B_{1}\right|+2\left|B_{2}^{2}\right|+3\left|B_{2}^{4}\right| \\
& =\left|B_{1}\right|+3\left(\frac{2\left|B_{2}^{2}\right|}{3}\right)+5\left(\frac{3\left|B_{2}^{4}\right|}{5}\right) \\
& \geq \frac{3}{5}\left(\left|B_{1}\right|+3\left|B_{2}^{2}\right|+5\left|B_{2}^{4}\right|\right) \\
& \geq \frac{3}{5}\left(n+\left|B_{0}^{2}\right|\right) \\
& \geq \frac{3}{5} n .
\end{aligned}
$$

Therefore, the result follows, since $\gamma_{S t R}(G)$ is an integer number.

3. Strong Roman Domination Number of $P_{m} \square P_{k}$

In this section, we investigate the strong Roman domination number of $P_{m} \square P_{k}$.
Theorem 3.1. For any positive integer k, $\gamma_{S t R}\left(P_{2} \square P_{k}\right)=\left\lceil\frac{4 k}{3}\right\rceil$.
Proof. By Observation 2.1, if $k \equiv 0(\bmod 3), \gamma_{S t R}\left(P_{2} \square P_{k}\right) \leq \frac{4 k}{3}=\left\lceil\frac{4 k}{3}\right\rceil$. By Observation 2.2, if $k \equiv 1(\bmod 3), \gamma_{S t R}\left(P_{2} \square P_{k}\right) \leq \frac{2(2 k+1)}{3}=\left\lceil\frac{4 k}{3}\right\rceil$. By Observation 2.3, if $k \equiv 2(\bmod 3), \gamma_{S t R}\left(P_{2} \square P_{k}\right) \leq \frac{4 k+1}{3}=\left\lceil\frac{4 k}{3}\right\rceil$. Hence, in any case, $\gamma_{S t R}\left(P_{2} \square P_{k}\right) \leq\left\lceil\frac{4 k}{3}\right\rceil$. Among all $\gamma_{S t R}$-function of $P_{2} \square P_{k}$, let f be chosen so that $\left|B_{1}\right|$ is maximized.

It is obvious that $B_{2}^{4}=\emptyset$. By inequality (2.1) in Theorem 2.5, it follows that

$$
\begin{aligned}
\gamma_{S t R}\left(P_{2} \square P_{k}\right) & \geq \frac{2}{3}\left(2 k+\left|B_{0}^{2}\right|+\frac{1}{2}\left|B_{1}\right|\right) \\
& \geq\left\lceil\frac{4 k}{3}\right\rceil .
\end{aligned}
$$

Therefore, $\gamma_{S t R}\left(P_{2} \square P_{k}\right)=\left\lceil\frac{4 k}{3}\right\rceil$.
Theorem 3.2. For any positive integer $k, \gamma_{S t R}\left(P_{3} \square P_{k}\right)=2 k$.
Proof. By Observation 2.1, $\gamma_{S t R}\left(P_{3} \square P_{k}\right)=\gamma_{S t R}\left(P_{k} \square P_{3}\right) \leq 2 k$.
Among all $\gamma_{S t R}$-function of $P_{3} \square P_{k}$, let f be chosen so that $\left|B_{1}\right|$ is maximized.
By Claim 2 in Theorem 2.5, $B_{2}^{3}=\emptyset$.
By inequality (2.1) in Theorem 2.5, it follows that

$$
\gamma_{S t R}\left(P_{3} \square P_{k}\right) \geq \frac{2}{3}\left(3 k+\left|B_{0}^{2}\right|+\frac{1}{2}\left(\left|B_{1}\right|-\left|B_{2}^{4}\right|\right)\right)
$$

In order to prove $\gamma_{S t R}\left(P_{3} \square P_{k}\right) \geq 2 k$, it is sufficient to prove that $2\left|B_{0}^{2}\right|+\left|B_{1}\right| \geq\left|B_{2}^{4}\right|$. If $B_{2}^{4}=\emptyset$, then it holds obviously. Hence, we may assume that $B_{2}^{4} \neq \emptyset$. It is obvious that $B_{2}^{4} \subseteq \mathcal{R}_{2}$. Now we define a function $g: B_{2}^{4} \rightarrow B_{0}^{2} \cup B_{1}$ as follows:

For any $u, v \in B_{2}^{4}, d(u, v) \geq 2$. Suppose that $u=v_{2 i}, v=v_{2 j}$ and $\left(\bigcup_{i+1 \leq l \leq j-1} \mathcal{C}_{l}\right) \cap B_{2}^{4}=\emptyset$, where $j-i \geq 2$. We discuss it from the following cases.

Case 1: $j=i+2$. That is $u=v_{2 i}$ and $v=v_{2(i+2)}$. Then $v_{2(i+1)} \in B_{0}^{2}$. Define $g(u)=v_{2(i+1)}$.
Case 2: $j=i+3$. That is $u=v_{2 i}$ and $v=v_{2(i+3)}$. If $v_{1(i+1)} \in B_{1}$, then define $g(u)=v_{1(i+1)}$. If $f\left(v_{1(i+1)}\right) \geq 2$, then $v_{2(i+1)} \in B_{0}^{2}$ and define $g(u)=v_{2(i+1)}$. If $v_{1(i+1)} \in B_{0}$, then $f\left(v_{1(i+2)}\right)=3$ and $v_{1(i+2)} \in B_{2}^{3}$, which is a contradiction.

Case 3: $j \geq i+4$. If $v_{1(i+1)} \in B_{1}$, then define $g(u)=v_{1(i+1)}$. If $f\left(v_{1(i+1)}\right) \geq 2$, then $v_{2(i+1)} \in B_{0}^{2}$ and define $g(u)=v_{2(i+1)}$. We may assume that $f\left(v_{1(i+1)}\right)=0$. Then $2 \leq f\left(v_{1(i+2)}\right) \leq 3$. Since $B_{2}^{3}=\emptyset, f\left(v_{1(i+2)}\right)=2$. Without loss of generality, we may assume that $f\left(v_{3(i+1)}\right)=0$ and $f\left(v_{3(i+2)}\right)=2$. If $f\left(v_{2(i+2)}\right)=1$, then define $g(u)=v_{2(i+2)}$. If $f\left(v_{2(i+2)}\right)=0$, then $v_{2(i+2)} \in B_{0}^{2}$ and define $g(u)=v_{2(i+2)}$. If $f\left(v_{2(i+2)}\right) \geq 2$, then $v_{2(i+1)} \in B_{0}^{2}$ and define $g(u)=v_{2(i+1)}$.

Let $h=\max \left\{j \mid v_{2 j} \in B_{2}^{4}\right\}$. If $h \leq k-2$, then by a similar way as Case 3 , there exists a vertex $v_{i j}$ such that $v_{i j} \in B_{0}^{2} \cup B_{1}$, where $i \in\{1,2,3\}$ and $j \in\{h+1, h+2\}$. So we define $g\left(v_{2 h}\right)=v_{i j}$. If $h=k-1$, then $f\left(v_{1 k}\right)=1$ and $v_{1 k} \in B_{1}$. So we define $g\left(v_{2 h}\right)=v_{1 k}$.

Hence, for any $u \in B_{2}^{4}$, there exists $w \in B_{0}^{2} \cup B_{1}$ such that $g(u)=w$. Furthermore, for any $u, v \in B_{2}^{4}$, if $u \neq v$, then $g(u) \neq g(v)$. Hence, $\left|B_{0}^{2}\right|+\left|B_{1}\right| \geq\left|B_{2}^{4}\right|$. So

$$
\gamma_{S t R}\left(P_{3} \square P_{k}\right) \geq \frac{2}{3}\left(3 k+\left|B_{0}^{2}\right|+\frac{1}{2}\left(\left|B_{1}\right|-\left|B_{2}^{4}\right|\right)\right) \geq 2 k
$$

Therefore, $\gamma_{S t R}\left(P_{3} \square P_{k}\right)=2 k$.
Lemma 3.3. For any positive integer $k, \gamma_{S t R}\left(P_{4} \square P_{k}\right) \leq\left\lceil\frac{8 k}{3}\right\rceil$.
Proof. Let $G=P_{4} \square P_{k}$. By Observation 2.1, if $k \equiv 0(\bmod 3), \gamma_{S t R}\left(P_{4} \square P_{k}\right) \leq \frac{8 k}{3}=$ $\left\lceil\frac{8 k}{3}\right\rceil$. By Observation 2.2 , if $k \equiv 1(\bmod 3), \gamma_{S t R}\left(P_{4} \square P_{n}\right) \leq \frac{4(2 k+1)}{3}=\left\lceil\frac{8 k}{3}\right\rceil+1$. By Observation 2.3, if $k \equiv 2(\bmod 3), \gamma_{S t R}\left(P_{4} \square P_{n}\right) \leq \frac{4(4 k+1)}{6}=\left\lceil\frac{8 k}{3}\right\rceil$.

Let $G=P_{4} \square P_{4}$. Let $V_{3}=\left\{v_{32}\right\}, V_{2}=\left\{v_{11}, v_{14}, v_{44}\right\}, V_{1}=\left\{v_{23}, v_{41}\right\}$ and $V_{0}=V(G) \backslash\left(V_{1} \cup V_{2} \cup V_{3}\right)$. Clearly, $\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ is a partition of $V(G)$. Define f_{4} on $V(G)$ by $f_{4}(v)=i$ for any $v \in V_{i}$, where $0 \leq i \leq 3$. It is obvious that f_{4} is a strong Roman dominating function of G. Therefore, $\gamma_{S t R}(G) \leq\left|f_{4}(V(G))\right|=11=\left\lceil\frac{8 k}{3}\right\rceil$, where $k=4$.

Let $G=P_{4} \square P_{7}$. Let $V_{3}=\left\{v_{21}, v_{35}\right\}, V_{2}=\left\{v_{13}, v_{14}, v_{17}, v_{42}, v_{43}, v_{47}\right\}, V_{1}=$ $\left\{v_{26}\right\}$ and $V_{0}=V(G) \backslash\left(V_{1} \cup V_{2} \cup V_{3}\right)$. Clearly, $\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ is a partition of $V(G)$. Define f_{7} on $V(G)$ by $f_{7}(v)=i$ for any $v \in V_{i}$, where $0 \leq i \leq 3$. It is obvious that f_{7} is a strong Roman dominating function of G. Therefore, $\gamma_{S t R}(G) \leq$ $\left|f_{7}(V(G))\right|=19=\left\lceil\frac{8 k}{3}\right\rceil$, where $k=7$.

For $k \geq 10$, let $k=7+3 t$. Let $V_{3}=\left\{v_{21}, v_{35}\right\}, V_{2}=\left\{v_{13}, v_{14}, v_{17}, v_{42}, v_{43}, v_{47}\right\} \cup$ $\left\{v_{1(2+6 j)}, v_{2(4+6 j)}, v_{3(4+6 j)}, v_{4(2+6 j)} \mid j=1,2, \cdots,\left\lceil\frac{t}{2}\right\rceil\right\} \cup\left\{v_{1(7+6 j)}, v_{2(5+6 j)}, v_{3(5+6 j)}\right.$, $\left.v_{4(7+6 j)} \mid j=1,2, \cdots,\left\lceil\frac{t+1}{2}\right\rceil-1\right\}, V_{1}=\left\{v_{26}\right\}$ and $V_{0}=V(G) \backslash\left(V_{1} \cup V_{2} \cup V_{3}\right)$. Clearly, $\left(V_{0}, V_{1}, V_{2}, V_{3}\right)$ is a partition of $V(G)$. Define f_{k} on $V(G)$ by $f_{k}(v)=i$ for any $v \in V_{i}$, where $0 \leq i \leq 3$. It is obvious that f_{k} is a strong Roman dominating function of G. Therefore, $\gamma_{S t R}(G) \leq\left|f_{k}(V(G))\right|=\left\lceil\frac{8 k}{3}\right\rceil$.
Lemma 3.4. For any positive integer $k \geq 4$,

$$
\gamma_{S t R}\left(P_{4} \square P_{k}\right) \geq \begin{cases}\left\lceil\frac{8 k}{3}\right\rceil & \text { if } k=4,5,6,7 \\ \left\lceil\frac{1}{3}\left(8 k-\left\lfloor\frac{k}{8}\right\rfloor+1\right)\right\rceil & \text { if } k \geq 8 .\end{cases}
$$

Proof. Among all $\gamma_{S t R^{-}}$-function of $P_{4} \square P_{k}$, let f be chosen so that $\left|B_{1}\right|$ is maximized. Then $B_{2}^{1}=B_{2}^{3}=\emptyset$. By inequality (2.1) in Theorem 2.5, it follows that

$$
\gamma_{S t R}\left(P_{4} \square P_{k}\right) \geq \frac{2}{3}\left(4 k+\left|B_{0}^{2}\right|+\frac{1}{2}\left(\left|B_{1}\right|-\left|B_{2}^{4}\right|\right)\right)
$$

If $B_{2}^{4}=\emptyset$, then $\gamma_{S t R}\left(P_{4} \square P_{k}\right) \geq\left\lceil\frac{8 k}{3}\right\rceil$. Hence, we may assume that $B_{2}^{4} \neq \emptyset$. It is obvious that $B_{2}^{4} \subseteq \mathcal{R}_{2} \cup \mathcal{R}_{3}$.

Claim 1. Suppose $\mathcal{C}_{j} \cap B_{2}^{4} \neq \emptyset$ for $j \in\{2,3, \cdots, k-1\}$. Then $\mid\left(\mathcal{C}_{j-1} \cup \mathcal{C}_{j} \cup \mathcal{C}_{j+1}\right) \cap$ $B_{2}^{4} \mid=1$.
Proof. Without loss of generality, we can assume that $v_{2 j} \in B_{2}^{4}$. Then $v_{2(j-1)}, v_{2(j+1)}, v_{3 j} \in B_{0}$. If $v_{3(j+1)} \in B_{2}^{4}$, then $d\left(v_{3(j+1)}\right)=4$ and $j \leq k-2$. Define a function f^{\prime} on $V(G)$ by $f^{\prime}(x)=f(x)$ for $x \in V(G)-\left\{v_{3(j+1)}, v_{3(j+2)}, v_{4(j+1)}\right\}$, $f^{\prime}\left(v_{3(j+1)}\right)=1, f^{\prime}\left(v_{3(j+2)}\right)=1$ and $f^{\prime}\left(v_{4(j+1)}\right)=1$. Then f^{\prime} is $\gamma_{S t R}$-function of $P_{4} \square P_{k}$ with $\left|B_{1}\right|$ more than $\left|B_{1}\right|$ in f, which is a contradiction. Hence $v_{3(j+1)} \notin B_{2}^{4}$. Similarly, $v_{3(j-1)} \notin B_{2}^{4}$. So, $\left|\left(\mathcal{C}_{j-1} \cup \mathcal{C}_{j} \cup \mathcal{C}_{j+1}\right) \cap B_{2}^{4}\right|=1$.

Claim 2. Let $h=\min \left\{j \mid v_{i j} \in B_{2}^{4}\right\}$. Then $\left(\bigcup_{1 \leq i \leq h} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$.
Proof. Without loss of generality, we can assume that $v_{2 h} \in B_{2}^{4}$. Then $2 \leq h \leq k-1$. If $h=2$, then $v_{11} \in B_{1}$. So $\left(\bigcup_{1 \leq i \leq h} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$.

Suppose that $h \geq 3$ and $\left(\bigcup_{1 \leq i \leq h} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right)=\emptyset$. Hence, for any vertex $v_{i j} \in\left(\bigcup_{1 \leq i \leq h} \mathcal{C}_{i}\right) \backslash\left\{v_{2 h}\right\}, v_{i j} \in \overline{B_{0}^{1}}$ or $v_{i j} \in B_{2}^{2}$. By Claim 3 in Theorem 2.5, $v_{1(h-1)}, v_{2(h-2)}, v_{3(h-1)}, v_{4 h} \in B_{0}^{1}$. In order to dominate $v_{1(h-1)}, f\left(v_{1(h-2)}\right)=2$. Hence, $v_{3(h-2)} \in B_{0}^{1}$. In order to dominate $v_{3(h-1)}, f\left(v_{4(h-1)}\right)=2$. Hence, $f\left(v_{4(h-2)}\right)=2$. If $h=3$, then $v_{4(h-2)} \in B_{2}^{1}$, which is a contradiction. If $h=4$, then $f\left(v_{1(h-3)}\right)=2$ and $v_{2(h-3)}, v_{3(h-3)}, v_{4(h-3)} \in B_{0}^{1}$. Then $v_{1(h-3)} \in B_{2}^{1}$, which is a contradiction. If $h \geq 5$, then $v_{1(h-4)}, v_{2(h-4)}, v_{4(h-4)} \in B_{0}^{1}$. Hence, $f\left(v_{3(h-4)}\right)=3$ and $v_{3(h-4)} \in B_{2}^{4}$, which is a contradiction. Hence, $\bigcup_{1 \leq i \leq h} \mathcal{C}_{i} \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$.

Claim 3. Let $l=\max \left\{j \mid v_{i j} \in B_{2}^{4}\right\}$. Then $\left(\bigcup_{l+1 \leq i \leq k} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$.
Proof. Without loss of generality, we can assume that $v_{2 l} \in B_{2}^{4}$. Then $l \leq k-1$. If $l=k-1$, then $v_{1 k} \in B_{1}$. So $\left(\bigcup_{l+1 \leq i \leq k} \mathfrak{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$.

Suppose that $l \leq k-2$ and $\left(\bigcup_{l+1 \leq i \leq k} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right)=\emptyset$. Hence, for any vertex $v_{i j} \in\left(\bigcup_{l+1 \leq i \leq k} \mathcal{C}_{i}\right), v_{i j} \in B_{0}^{1}$ or $v_{i j} \in B_{2}^{2}$. Then $v_{1(l+1)}, v_{2(l+2)}, v_{3(l+1)} \in B_{0}^{1}$. In order to dominate $v_{1(l+1)}, f\left(v_{1(l+2)}\right)=2$. Hence, $v_{3(l+2)} \in B_{0}^{1}$. In order to dominate $v_{3(l+1)}, f\left(v_{4(l+1)}\right)=2$. If $l=k-2$, then $f\left(v_{4(l+2)}\right)=2$ and $v_{4(l+2)} \in B_{2}^{1}$, which is a contradiction. If $l=k-3$, then $f\left(v_{1(l+3)}\right)=2$ and $v_{2(l+3)}, v_{3(l+3)} \in B_{0}^{1}$. So, $v_{1(l+3)} \in B_{2}^{1}$, which is a contradiction. If $l \leq k-4$, then $f\left(v_{1(l+3)}\right)=2$ and $v_{2(l+3)}, v_{3(l+3)}, v_{1(l+4)}, v_{2(l+4)} \in B_{0}^{1}$. In order to dominate $v_{3(l+2)}, f\left(v_{4(l+2)}\right)=2$. Hence, $v_{4(l+3)}, v_{4(l+4)} \in B_{0}^{1}$. Hence, $f\left(v_{3(l+4)}\right)=3$ and $v_{3(l+4)} \in B_{2}^{4}$, which is a contradiction.

Claim 4. Suppose that $\mathcal{C}_{j} \cap B_{2}^{4} \neq \emptyset, \mathcal{C}_{r} \cap B_{2}^{4} \neq \emptyset$ and $\left(\bigcup_{j+1 \leq i \leq r-1} \mathcal{C}_{i}\right) \cap B_{2}^{4}=\emptyset$. If $r-j \geq 5$ or $2 \leq r-j \leq 3$, then $\left(\bigcup_{j+1 \leq i \leq r} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \bar{\emptyset}$.
Proof. If $r-j \geq 5$, then $\left(\bigcup_{r-4 \leq i \leq r} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$ by a similar proof as Claim 2. Since $r-j \geq 5, r-4 \geq j+1$. Hence, $\left(\bigcup_{j+1 \leq i \leq r} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$.

Suppose that $r-j=2$. Without loss of generality, we can assume that $v_{2 j} \in B_{2}^{4}$. If $v_{2(j+2)} \in B_{2}^{4}$, then $v_{2(j+1)} \in B_{0}^{2}$. So $\left(\bigcup_{j+1 \leq i \leq r} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$. Suppose that $v_{3(j+2)} \in B_{2}^{4}$. If $f\left(v_{1(j+2)}\right) \geq 1$, then $\left(\bar{\bigcup}_{j+1 \leq i \leq r} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$. If $f\left(v_{1(j+2)}\right)=0$, then $v_{1(j+1)} \in B_{1}$. So, $\left(\bigcup_{j+1 \leq i \leq r} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$.

Suppose that $r-j=3$. Without loss of generality, we can assume that $v_{2 j} \in B_{2}^{4}$. Assume that $v_{2(j+3)} \in B_{2}^{4}$. If $f\left(v_{1(j+1)}\right) \geq 1$ or $f\left(v_{1(j+2)}\right) \geq 1$, then $\left(\bigcup_{j+1 \leq i \leq r} \mathcal{C}_{i}\right) \cap$ $\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$. If $f\left(v_{1(j+1)}\right)=0$ and $f\left(v_{1(j+2)}\right)=0$, then $v_{1(j+2)}$ is not dominated by B_{2}, which is a contradiction. Hence, $\left(\bigcup_{j+1 \leq i \leq r} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$.

Without loss of generality, we can assume that $v_{3(j+3)} \in B_{2}^{4}$. If $f\left(v_{1(j+1)}\right) \geq 1$, $f\left(v_{2(j+2)}\right) \geq 1$ or $f\left(v_{1(j+3)}\right) \geq 1$, then $\left(\bigcup_{j+1 \leq i \leq r} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$. If $f\left(v_{1(j+1)}\right)=$ $0, f\left(v_{2(j+2)}\right)=0$ and $f\left(v_{1(j+3)}\right)=0$, then $\bar{f}\left(v_{1(j+2)}\right)=3$ and $v_{1(j+2)} \in B_{2}^{3}$, which is a contradiction. Hence, $\left(\bigcup_{j+1 \leq i \leq r} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$.
Remark. if $r=j+4$, then $\left(\bigcup_{j+1 \leq i \leq r} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right)=\emptyset$ may be hold. Assume that $v_{2 j} \in B_{2}^{4}$. If $\left(\bigcup_{j+1 \leq i \leq r} \mathcal{C}_{i}\right) \cap\left(\bar{B}_{0}^{2} \cup B_{1}\right)=\emptyset$, then $f(v)$ is fixed for any $v \in$ $\left(\bigcup_{j \leq i \leq r} \mathcal{C}_{i}\right)$. That is, $v_{3(j+4)} \in B_{2}^{4},\left\{v_{1(j+2)}, v_{1(j+3)}, v_{4(j+1)}, v_{4(j+2)}\right\} \subseteq B_{2}^{2}$ and $\left(\bigcup_{j \leq i \leq r} \mathcal{C}_{i}\right) \backslash\left\{v_{3(j+4)}, v_{2 j}, v_{1(j+2)}, v_{1(j+3)}, v_{4(j+1)}, v_{4(j+2)}\right\} \subseteq B_{0}^{1}$.
Claim 5. Suppose that $\mathcal{C}_{j-4} \cap B_{2}^{4} \neq \emptyset, \mathfrak{C}_{j} \cap B_{2}^{4} \neq \emptyset,\left(\bigcup_{j-3 \leq i \leq j-1} \mathcal{C}_{i}\right) \cap B_{2}^{4}=\emptyset$ and $\left(\bigcup_{j-3 \leq i \leq j} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right)=\emptyset$. If $\mathfrak{C}_{l} \cap B_{2}^{4} \neq \emptyset$ for $l \geq j+2$ and $\left(\bigcup_{j+1 \leq i \leq l-1} \mathcal{C}_{i}\right) \cap B_{2}^{4}=$ \emptyset, then $\left(\cup_{j+1 \leq i \leq l} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$.
Proof. Assume that $v_{2(j-4)} \in B_{2}^{4}$. By remark, $v_{3 j} \in B_{2}^{4}, v_{1(j-1)} \in B_{2}^{2}$ and $v_{1 j} \in B_{0}^{1}$. If $l-j \geq 5$ or $2 \leq l-j \leq 3$, then $\left(\bigcup_{j+1 \leq i \leq l} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$ by Claim 4. Without loss of generality, we can assume that $l=j+4$. Suppose that $v_{2(j+4)} \in B_{2}^{4}$. If $v_{1(j+1)} \in B_{1}$, then $\left(\bigcup_{j+1 \leq i \leq l} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$. Hence, $v_{1(j+1)} \in B_{0}^{1}$.

If $f\left(v_{2(j+2)}\right) \geq 1$ or $f\left(v_{1(j+3)}\right) \geq 1$, then $\left(\cup_{j+1 \leq i \leq l} \mathfrak{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$. If $f\left(v_{2(j+2)}\right)=0$ and $f\left(v_{1(j+3)}\right)=0$, then $v_{1(j+2)} \in B_{2}^{3}$, which is a contradiction.

Without loss of generality, we can assume that $v_{3(j+4)} \in B_{2}^{4}$. If $f\left(v_{4(j+1)}\right) \geq 1$, $f\left(v_{3(j+2)}\right) \geq 1$ or $f\left(v_{4(j+3)}\right) \geq 1$, then $\left(\bigcup_{j+1 \leq i \leq l} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right) \neq \emptyset$. If $f\left(v_{4(j+1)}\right)=$ $0, f\left(v_{3(j+2)}\right)=0$ and $f\left(v_{4(j+3)}\right)=0$, then $f\left(v_{4(j+2)}\right)=3$ and $v_{4(j+2)} \in B_{2}^{3}$, which is a contradiction.

Suppose that there exist two positive integer j and r such that $\mathcal{C}_{j-4} \cap B_{2}^{4} \neq \emptyset$, $\mathfrak{C}_{j} \cap B_{2}^{4} \neq \emptyset, \mathfrak{C}_{r} \cap B_{2}^{4} \neq \emptyset, \mathcal{C}_{r+4} \cap B_{2}^{4} \neq \emptyset,\left(\bigcup_{j-3 \leq i \leq j-1} \mathfrak{C}_{i}\right) \cap B_{2}^{4}=\emptyset$, $\left(\bigcup_{r+1 \leq i \leq r+3} \mathcal{C}_{i}\right) \cap B_{2}^{4}=\emptyset,\left(\bigcup_{j+1 \leq i \leq r-1} \mathcal{C}_{i}\right) \cap B_{2}^{4}=\emptyset,\left(\bigcup_{j-3 \leq i \leq j} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right)=\emptyset$ and $\left(\bigcup_{r+1 \leq i \leq r+4} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right)=\emptyset$, where $r \geq j+2$. If $\left(\bigcup_{j+1 \leq i \leq r} \mathcal{C}_{i}\right) \cap B_{0}^{2}=\emptyset$ and $\left|\left(\cup_{j+1 \leq i \leq r} \mathcal{C}_{i}\right) \cap B_{1}\right|=1$, then $r-j \geq 4$.

Suppose that there exist a positive integer j such that $\mathcal{C}_{j} \cap B_{2}^{4} \neq \emptyset, \mathcal{C}_{j+4} \cap B_{2}^{4} \neq \emptyset$, $\left(\bigcup_{j+1 \leq i \leq j+4} \mathcal{C}_{i}\right) \cap\left(B_{0}^{2} \cup B_{1}\right)=\emptyset$ and $\left(\bigcup_{1 \leq i \leq j-1} \mathcal{C}_{i}\right) \cap B_{2}^{4}=\emptyset$. If $\left(\bigcup_{1 \leq i \leq j} \mathcal{C}_{i}\right) \cap B_{0}^{2}=\emptyset$ and $\left|\left(\cup_{1 \leq i \leq j} \mathcal{C}_{i}\right) \cap B_{1}\right|=1$, then $j \geq 3$.

By Claims 2-5, it follows that if $k=4,5,6$ or 7 , then $\left|B_{0}^{2}\right|+\left|B_{1}\right|-\left|B_{2}^{4}\right| \geq 0$. So, $\gamma_{S t R}\left(P_{4} \square P_{k}\right) \geq \frac{8 k}{3}$. If $k \geq 8$, then $\left|B_{0}^{2}\right|+\left|B_{1}\right|-\left|B_{2}^{4}\right| \geq-\left\lfloor\frac{k}{8}\right\rfloor+1$. Hence,

$$
\begin{aligned}
\gamma_{S t R}\left(P_{4} \square P_{k}\right) & \geq \frac{2}{3}\left(4 k+\left|B_{0}^{2}\right|+\frac{1}{2}\left(\left|B_{1}\right|-\left|B_{2}^{4}\right|\right)\right) \\
& =\frac{8 k}{3}+\frac{1}{3}\left(2\left|B_{0}^{2}\right|+\left|B_{1}\right|-\left|B_{2}^{4}\right|\right) \\
& \geq \frac{1}{3}\left(8 k-\left\lfloor\frac{k}{8}\right\rfloor+1\right) .
\end{aligned}
$$

Therefore, the result follows, since $\gamma_{S t R}(G)$ is an integer number.

By Lemma 3.3 and Lemma 3.4, we give the following.
Corollary 3.5. For positive integer $k \in\{4,5,6,7\}, \gamma_{S t R}\left(P_{4} \square P_{k}\right)=\left\lceil\frac{8 k}{3}\right\rceil$.
Theorem 3.6. For any positive integer $k \geq 8,\left\lceil\frac{1}{3}\left(8 k-\left\lfloor\frac{k}{8}\right\rfloor+1\right)\right\rceil \leq \gamma_{S t R}\left(P_{4} \square P_{k}\right) \leq$ $\left\lceil\frac{8 k}{3}\right\rceil$, and both bounds are sharp.
Remark 3.7. In order to show the lower bound is sharp, define a function f on $P_{4} \square P_{17}$ by

$$
\begin{aligned}
& f\left(\mathcal{R}_{1}\right)=\left\{f\left(v_{11}\right), f\left(v_{12}\right), \cdots, f\left(v_{1(17)}\right)\right\}=\{2,0,0,0,2,2,0,0,2,0,0,2,2,0,0,0,2\}, \\
& f\left(\mathcal{R}_{2}\right)=\left\{f\left(v_{21}\right), f\left(v_{22}\right), \cdots, f\left(v_{2(17)}\right)\right\}=\{0,0,3,0,0,0,0,0,2,0,0,0,0,0,3,0,0\}, \\
& f\left(\mathcal{R}_{3}\right)=\left\{f\left(v_{31}\right), f\left(v_{32}\right), \cdots, f\left(v_{3(17)}\right)\right\}=\{0,1,0,0,0,0,3,0,1,0,3,0,0,0,0,1,0\}, \\
& f\left(\mathcal{R}_{4}\right)=\left\{f\left(v_{41}\right), f\left(v_{42}\right), \cdots, f\left(v_{4(17)}\right)\right\}=\{2,0,0,2,2,0,0,0,2,0,0,0,2,2,0,0,2\} .
\end{aligned}
$$

It is obvious that f is a strong Roman dominating function of $P_{4} \square P_{17}$ and $\gamma_{S t R}\left(P_{4} \square P_{17}\right) \leq 45$. Since $\left\lceil\frac{1}{3}\left(8 k-\left\lfloor\frac{k}{8}\right\rfloor+1\right)\right\rceil=45$ for $k=17$, it follows that $\gamma_{S t R}\left(P_{4} \square P_{17}\right)=\left\lceil\frac{1}{3}\left(8 k-\left\lfloor\frac{k}{8}\right\rfloor+1\right)\right\rceil$.

In order to show the upper bound is sharp, define a function f on $P_{4} \square P_{9}$ by

$$
\begin{aligned}
& f\left(\mathcal{R}_{1}\right)=\left\{f\left(v_{11}\right), f\left(v_{12}\right), \cdots, f\left(v_{19}\right)\right\}=\{2,0,0,0,2,2,0,0,2\} \\
& f\left(\mathcal{R}_{2}\right)=\left\{f\left(v_{21}\right), f\left(v_{22}\right), \cdots, f\left(v_{29}\right)\right\}=\{0,0,3,0,0,0,0,1,0\} \\
& f\left(\mathcal{R}_{3}\right)=\left\{f\left(v_{31}\right), f\left(v_{32}\right), \cdots, f\left(v_{39}\right)\right\}=\{0,1,0,0,0,0,3,0,0\} \\
& f\left(\mathcal{R}_{4}\right)=\left\{f\left(v_{41}\right), f\left(v_{42}\right), \cdots, f\left(v_{49}\right)\right\}=\{2,0,0,2,2,0,0,0,2\}
\end{aligned}
$$

It is obvious that f is a strong Roman dominating function of $P_{4} \square P_{9}$ and $\gamma_{S t R}\left(P_{4} \square P_{9}\right) \leq 24=\left\lceil\frac{8 k}{3}\right\rceil$. Since $\left\lceil\frac{1}{3}\left(8 k-\left\lfloor\frac{k}{8}\right\rfloor+1\right)\right\rceil=24$ for $k=9$, it follows that $\gamma_{S t R}\left(P_{4} \square P_{9}\right)=\left\lceil\frac{8 k}{3}\right\rceil$.

Acknowledgements. This research was financially supported by Changwon National University in 2019.

References

[1] M P. Álvarez-Ruiz, T. Mediavilla-Gradolph, S. M. Sheikholeslami, J. C. ValenzuelaTripodoro and I. G. Yero, On the strong Roman domination number of graphs, Discrete Appl. Math., 231(2017), 44-59.
[2] E. J. Cockayne, P. M. Dreyer Jr., S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs, Discrete Math., 278(2004), 11-22.
[3] C. S. ReVelle and K. E. Rosing, Defendents imperium romanum: a classical problem in military strategy, Amer. Math. Monthly, 107(7)(2000), 585-594.
[4] I. Stewart, Defend the roman empire!, Sci. Amer., 281(6)(1999), 136-138.

