KYUNGPOOK Math. J. 59(2019), 515-523 https://doi.org/10.5666/KMJ.2019.59.3.515 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Strong Roman Domination in Grid Graphs

XUE-GANG CHEN Department of Mathematics, North China Electric Power University, Beijing 102206, China e-mail: gxcxdm@163.com

MOO YOUNG SOHN* Department of Mathematics, Changwon National University, Changwon 51140, Korea e-mail: mysohn@changwon.ac.kr

ABSTRACT. Consider a graph G of order n and maximum degree Δ . Let $f: V(G) \rightarrow \{0, 1, \cdots, \lceil \frac{\Delta}{2} \rceil + 1\}$ be a function that labels the vertices of G. Let $B_0 = \{v \in V(G) : f(v) = 0\}$. The function f is a strong Roman dominating function for G if every $v \in B_0$ has a neighbor w such that $f(w) \geq 1 + \lceil \frac{1}{2} |N(w) \cap B_0| \rceil$. In this paper, we study the bounds on strong Roman domination numbers of the Cartesian product $P_m \Box P_k$ of paths P_m and paths P_k . We compute the exact values for the strong Roman domination number of the Cartesian product $P_2 \Box P_k$ and $P_3 \Box P_k$. We also show that the strong Roman domination number of the Cartesian product $P_4 \Box P_k$ is between $\lceil \frac{1}{3}(8k - \lfloor \frac{k}{8} \rfloor + 1) \rceil$ and $\lceil \frac{8k}{3} \rceil$ for $k \geq 8$, and that both bounds are sharp bounds.

1. Introduction

Graph theory terminology not presented here can be found in [1]. Let G = (V, E) be a graph with |V| = n. The degree, neighborhood and closed neighborhood of a vertex v in the graph G are denoted by $d_G(v)$, $N_G(v)$ and $N_G[v] = N_G(v) \cup \{v\}$, respectively. If the graph G is clear from context, we simply write d(v), N(v) and N[v], respectively. The minimum degree and maximum degree of the graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. The diameter diam(G) of a connected graph G is the maximum distance between two vertices of G. The graph induced by $S \subseteq V$ is denoted by G[S]. A path on n vertices is denoted by P_n .

^{*} Corresponding Author.

Received January 2, 2019; revised September 3, 2019; accepted September 19, 2019. 2010 Mathematics Subject Classification: 05C69, 05C38.

Key words and phrases: Roman domination number, strong Roman domination number, grid.

For two graphs G_1 and G_2 , the Cartesian product $G_1 \square G_2$ is the graph with vertex set $V(G_1) \times V(G_2)$, where vertex (u_1, v_1) is adjacent to vertex (u_2, v_2) if and only if either $u_1 = u_2$ and $v_1v_2 \in E(G_2)$ or $v_1 = v_2$ and $u_1u_2 \in E(G_1)$. $G = P_m \square P_k$ is called a grid graph.

Let $\{v_{ij}|1 \leq i \leq m, 1 \leq j \leq k\}$ be the vertex set of $G = P_m \Box P_k$ so that the subgraph induced by $\mathcal{R}_i = \{v_{i1}, v_{i2}, \cdots, v_{ik}\}$ is isomorphic to the path P_k for each $1 \leq i \leq m$ and the subgraph induced by $\mathcal{C}_j = \{v_{1j}, v_{2j}, \cdots, v_{mj}\}$ is isomorphic to the path P_m for each $1 \leq j \leq k$.

A set $S \subseteq V$ in a graph G is called a *dominating set* if N[S] = V. The *domination number* $\gamma(G)$ equals the minimum cardinality of a dominating set in G. A dominating set of G with cardinality $\gamma(G)$ is called a γ -set of G.

Let $f: V \to \{0, 1, 2\}$ be a function having the property that for every vertex $v \in V$ with f(v) = 0, there exists a neighbor $u \in N(v)$ with f(u) = 2. Such a function is called a *Roman dominating function*. The weight of a Roman dominating function is the sum $f(V) = \sum_{v \in V} f(v)$. The minimum weight of a Roman dominating function on G is called the *Roman domination number* of G and is denoted $\gamma_R(G)$. Roman domination was defined and discussed by Stewart [4] in 1999. It was developed by ReVelle and Rosing [3] in 2000 and Cockayne et al. [2] in 2004. In order to deal with multiple simultaneous attacks, Álvarez-Ruiz et al. [1] in 2017 initiated the study of a new parameter related to Roman dominating function, which is called strong Roman domination.

Consider a graph G of order n and maximum degree Δ . Let $f: V(G) \rightarrow \{0, 1, \dots, \lceil \frac{\Delta}{2} \rceil + 1\}$ be a function that labels the vertices of G. Let $B_0 = \{v \in V : f(v) = 0\}$. Then f is a strong Roman dominating function for G, if every $v \in B_0$ has a neighbor w, such that $f(w) \geq 1 + \lceil \frac{1}{2} | N(w) \cap B_0 | \rceil$. The weight of a strong Roman dominating function is the sum $f(V) = \sum_{v \in V} f(v)$. The minimum weight of a strong Roman dominating function on G is called the strong Roman domination number of G and is denoted $\gamma_{StR}(G)$. A strong Roman dominating function of G with weight $\gamma_{StR}(G)$ is called a γ_{StR} -function of G. For any $S \subseteq V$, define $f(S) = \sum_{v \in S} f(v)$. Let f be a γ_{StR} -function of G. Let $B_2 = \{v \in V : f(v) \geq 2\}$. For any $v \in B_0$, there exists a vertex $u \in B_2$ such that $vu \in E(G)$. We say that v is dominated by u or by B_2 . If f is a strong Roman dominating function of G, then every vertex in B_0 is dominated by some vertex in B_2 .

In this paper, we study the bounds on strong Roman domination numbers of the Cartesian product $P_m \Box P_k$ of paths P_m and paths P_k . Exact values for the strong Roman domination number of the Cartesian product $P_2 \Box P_k$ and $P_3 \Box P_k$ are found, and it is shown that for the strong Roman domination number of the Cartesian product $P_4 \Box P_k$ this number is between $\lceil \frac{1}{3}(8k - \lfloor \frac{k}{8} \rfloor + 1) \rceil$ and $\lceil \frac{8k}{3} \rceil$ for $k \ge 8$, and both bounds are sharp bounds.

2. Bounds of Strong Roman Domination Number of $P_m \Box P_k$

In this section, we present upper and lower bounds on the strong Roman domination number of the Cartesian product of paths P_m and paths P_k . **Observation 2.1.** For any positive integers m, k such that $k \equiv 0 \pmod{3}$, $\gamma_{StR}(P_m \Box P_k) \leq \frac{2mk}{3}$.

Proof. Let $G = P_m \Box P_k$, where k = 3t for a positive integer t. Let $V_2 = \{v_{ij} | 1 \le i \le m, j = 3l - 1, 1 \le l \le t\}$, $V_1 = \emptyset$ and $V_0 = V(G) \setminus (V_1 \cup V_2)$. Clearly, (V_0, V_1, V_2) is a partition of V(G). Define f on V(G) by f(v) = i for any $v \in V_i$, where $0 \le i \le 2$. It is obvious that f is a strong Roman dominating function of G. Therefore, $\gamma_{StR}(G) \le |f(V(G))| = \frac{2mk}{3}$.

Observation 2.2. For any positive integers m, k such that $k \equiv 1 \pmod{3}$, $\gamma_{StR}(P_m \Box P_k) \leq \frac{m(2k+1)}{3}$.

Proof. Let $G = P_m \Box P_k$, where k = 3t + 1 for a positive integer t. Let $V_2 = \{v_{ij} | 1 \leq i \leq m, j = 3l - 1, 1 \leq l \leq t\}, V_1 = \{v_{ik} | 1 \leq i \leq m\}$ and $V_0 = V(G) \setminus (V_1 \cup V_2)$. Clearly, (V_0, V_1, V_2) is a partition of V(G). Define f on V(G) by f(v) = i for any $v \in V_i$, where $0 \leq i \leq 2$. It is obvious that f is a strong Roman dominating function of G. Therefore, $\gamma_{StR}(G) \leq |f(V(G))| = \frac{m(2k+1)}{3}$. \Box

Observation 2.3. For any positive integers m, k such that $k \equiv 2 \pmod{3}$, then

$$\gamma_{StR}(P_m \Box P_k) \le \begin{cases} \frac{m(4k+1)}{6} & \text{if } m \equiv 0 \pmod{2} \\ \frac{m(4k+1)+3}{6} & \text{if } m \equiv 1 \pmod{2}. \end{cases}$$

Proof. Let $G = P_m \Box P_k$, where k = 3t + 2 for a positive integer t. Suppose $m \equiv 0 \pmod{2}$. Let $V_2 = \{v_{ij} | 1 \leq i \leq m, j = 3l - 1, 1 \leq l \leq t\} \cup \{v_{jk} | j = 4l + 1, 0 \leq l \leq \lfloor \frac{m-1}{4} \rfloor\} \cup \{v_{jk} | j = 4l, 1 \leq l \leq \lfloor \frac{m}{4} \rfloor\}$, $V_1 = \{v_{j(k-1)} | j = 4l + 2, 0 \leq l \leq \lfloor \frac{m-1}{4} \rfloor\} \cup \{v_{j(k-1)} | j = 4l - 1, 1 \leq l \leq \lfloor \frac{m}{4} \rfloor\}$ and $V_0 = V(G) \setminus (V_1 \cup V_2)$. Clearly, (V_0, V_1, V_2) is a partition of V(G). Define f on V(G) by f(v) = i for any $v \in V_i$, where $0 \leq i \leq 2$. It is obvious that f is a strong Roman dominating function of G. Therefore, $\gamma_{StR}(G) \leq f(V(G)) = \frac{m(4k+1)}{6}$.

Therefore, $\gamma_{StR}(G) \leq f(V(G)) = \frac{1}{6}$. Suppose that $m \equiv 1 \pmod{2}$. Let $V_2 = \{v_{ij} | 1 \leq i \leq m, j = 3l - 1, 1 \leq l \leq t\} \cup \{v_{jk} | j = 4l + 1, 0 \leq l \leq \lfloor \frac{m-2}{4} \rfloor\} \cup \{v_{jk} | j = 4l, 1 \leq l \leq \lfloor \frac{m-1}{4} \rfloor\}, V_1 = \{v_{j(k-1)} | j = 4l + 2, 0 \leq l \leq \lfloor \frac{m-2}{4} \rfloor\} \cup \{v_{j(k-1)} | j = 4l - 1, 1 \leq l \leq \lfloor \frac{m-1}{4} \rfloor\} \cup \{v_{m(k-1)}, v_{mk}\}$ and $V_0 = V(G) \setminus (V_1 \cup V_2)$. Clearly, (V_0, V_1, V_2) is a partition of V(G). Define f on V(G) by f(v) = i for any $v \in V_i$, where $0 \leq i \leq 2$. It is obvious that f is a strong Roman dominating function of G. Therefore, $\gamma_{StR}(G) \leq f(V(G)) = \frac{m(4k+1)+3}{6}$. \Box

Lemma 2.4.([1]) Let G be a connected graph of order n. Then $\gamma_{StR}(G) \ge \lceil \frac{n+1}{2} \rceil$.

By the following result, we improve the above result for a connected graph G with $\Delta(G) \leq 4$.

Theorem 2.5. Let G be a connected graph of order n with $\Delta(G) \leq 4$. Then $\gamma_{StR}(G) \geq \lceil \frac{3n}{5} \rceil$.

Proof. Let f be a γ_{StR} -function of G, and let $B_0 = \{w \in V(G) | f(w) = 0\}, B_1 = \{w \in V(G) | f(w) = 1\}$ and $B_2 = \{w \in V(G) | f(w) \ge 2\}$. Let $B_2^i = \{w \in V(G) | f(w) \ge 2\}$.

 $\begin{array}{l} B_2|\;|N(w)\cap B_0|=i\} \text{ for } i=1,2,3,4. \text{ Let } B_0^1=\{w\in B_0|\;|N(w)\cap B_2|=1\} \text{ and } \\ B_0^2=\{w\in B_0|\;|N(w)\cap B_2|\geq 2\}. \text{ Clearly } (B_0,B_1,B_2) \text{ is a partition of } V(G), \\ (B_2^1,B_2^2,B_2^3,B_2^4) \text{ is a partition of } B_2 \text{ and } (B_0^1,B_0^2) \text{ is a partition of } B_0. \text{ Hence, } \\ n=|B_0|+|B_1|+|B_2|,\;|B_2|=|B_2^1|+|B_2^2|+|B_2^3|+|B_2^4| \text{ and } |B_0|=|B_0^1|+|B_0^2|. \\ \text{Among all } \gamma_{StR}\text{-function of } G, \text{ let } f \text{ be chosen so that } |B_1| \text{ is maximized.} \end{array}$

Claim 1.
$$B_2^1 = \emptyset$$
.

Proof. Suppose that $B_2^1 \neq \emptyset$. Say $v \in B_2^1$ and $N(v) \cap B_0 = \{u\}$. Define f' on V(G) by f'(x) = f(x) for $x \in V(G) - \{u, v\}$, f'(u) = 1 and f'(v) = 1. Obviously f' is a γ_{StR} -function of G with $|B_1|$ more than f, which is a contradiction. \Box

Claim 2. $B_2^3 = \emptyset$.

Proof. Suppose that $B_2^3 \neq \emptyset$. Say $v \in B_2^3$ and $N(v) \cap B_0 = \{u_1, u_2, u_3\}$. Define f' on V(G) by f'(x) = f(x) for $x \in V(G) - \{u_1, v\}$, $f'(u_1) = 1$ and f'(v) = 2. Obviously f' is a γ_{StR} -function of G with $|B_1|$ more than f, which is a contradiction. \Box

Claim 3. Let $u \in B_2^2$. Then $N(u) \cap B_0 \subseteq B_0^1$.

Proof. Say $N(u) \cap B_0 = \{w_1, w_2\}$. Suppose that $w_1 \notin B_0^1$. So $w_1 \in B_0^2$. Define f' on V(G) by f'(x) = f(x) for $x \in V(G) - \{u, w_2\}$, f'(u) = 1 and $f'(w_2) = 1$. Obviously f' is a γ_{StR} -function of G with $|B_1|$ more than f, which is a contradiction. \Box

By Claim 1, $|B_2| = |B_2^2| + |B_2^4|$. Let $E(B_0, B_2)$ denote the edge set between B_0 and B_2 . It is obvious that $|B_0^1| + 2|B_0^2| \le |E(B_0, B_2)| \le 2|B_2^2| + 4|B_2^4|$. So, $|B_0| + |B_0^2| \le 2|B_2^2| + 4|B_2^4|$. Hence, $n + |B_0^2| \le |B_1| + 3|B_2^2| + 5|B_2^4|$. Hence

(2.1)

$$\gamma_{StR}(G) = |B_1| + 2|B_2^2| + 3|B_2^4| \\
= \frac{2}{3}(n + \frac{1}{2}|B_1| + 2|B_2^2| + \frac{7}{2}|B_2^4| - |B_0|) \\
\geq \frac{2}{3}(n + |B_0^2| + \frac{1}{2}(|B_1| - |B_2^4|)).$$

and

$$\begin{split} \gamma_{StR}(G) &= |B_1| + 2|B_2^2| + 3|B_2^4| \\ &= |B_1| + 3(\frac{2|B_2^2|}{3}) + 5(\frac{3|B_2^4|}{5}) \\ &\geq \frac{3}{5}(|B_1| + 3|B_2^2| + 5|B_2^4|) \\ &\geq \frac{3}{5}(n + |B_0^2|) \\ &\geq \frac{3}{5}n. \end{split}$$

Therefore, the result follows, since $\gamma_{StR}(G)$ is an integer number.

3. Strong Roman Domination Number of $P_m \Box P_k$

In this section, we investigate the strong Roman domination number of $P_m \Box P_k$.

Theorem 3.1. For any positive integer k, $\gamma_{StR}(P_2 \Box P_k) = \lceil \frac{4k}{3} \rceil$.

Proof. By Observation 2.1, if $k \equiv 0 \pmod{3}$, $\gamma_{StR}(P_2 \Box P_k) \leq \frac{4k}{3} = \lceil \frac{4k}{3} \rceil$. By Observation 2.2, if $k \equiv 1 \pmod{3}$, $\gamma_{StR}(P_2 \Box P_k) \leq \frac{2(2k+1)}{3} = \lceil \frac{4k}{3} \rceil$. By Observation 2.3, if $k \equiv 2 \pmod{3}$, $\gamma_{StR}(P_2 \Box P_k) \leq \frac{4k+1}{3} = \lceil \frac{4k}{3} \rceil$. Hence, in any case, $\gamma_{StR}(P_2 \Box P_k) \leq \lceil \frac{4k}{3} \rceil$. Among all γ_{StR} -function of $P_2 \Box P_k$, let f be chosen so that $|B_1|$ is maximized.

It is obvious that $B_2^4 = \emptyset$. By inequality (2.1) in Theorem 2.5, it follows that

$$\begin{array}{ll} \gamma_{StR}(P_2 \Box P_k) & \geq \frac{2}{3}(2k + |B_0^2| + \frac{1}{2}|B_1|) \\ & \geq \lceil \frac{4k}{3} \rceil. \end{array}$$

Therefore, $\gamma_{StR}(P_2 \Box P_k) = \lceil \frac{4k}{3} \rceil$.

Theorem 3.2. For any positive integer k, $\gamma_{StR}(P_3 \Box P_k) = 2k$.

Proof. By Observation 2.1, $\gamma_{StR}(P_3 \Box P_k) = \gamma_{StR}(P_k \Box P_3) \leq 2k$.

Among all γ_{StR} -function of $P_3 \Box P_k$, let f be chosen so that $|B_1|$ is maximized. By Claim 2 in Theorem 2.5, $B_2^3 = \emptyset$.

By inequality (2.1) in Theorem 2.5, it follows that

$$\gamma_{StR}(P_3 \Box P_k) \ge \frac{2}{3}(3k + |B_0^2| + \frac{1}{2}(|B_1| - |B_2^4|))$$

In order to prove $\gamma_{StR}(P_3 \Box P_k) \ge 2k$, it is sufficient to prove that $2|B_0^2|+|B_1| \ge |B_2^4|$. If $B_2^4 = \emptyset$, then it holds obviously. Hence, we may assume that $B_2^4 \neq \emptyset$. It is obvious that $B_2^4 \subseteq \mathbb{R}_2$. Now we define a function $g: B_2^4 \to B_0^2 \cup B_1$ as follows:

For any $u, v \in B_2^4$, $d(u, v) \geq 2$. Suppose that $u = v_{2i}$, $v = v_{2j}$ and $(\bigcup_{i+1 \leq l \leq j-1} \mathcal{C}_l) \cap B_2^4 = \emptyset$, where $j - i \geq 2$. We discuss it from the following cases.

Case 1: j = i + 2. That is $u = v_{2i}$ and $v = v_{2(i+2)}$. Then $v_{2(i+1)} \in B_0^2$. Define $g(u) = v_{2(i+1)}$.

Case 2: j = i + 3. That is $u = v_{2i}$ and $v = v_{2(i+3)}$. If $v_{1(i+1)} \in B_1$, then define $g(u) = v_{1(i+1)}$. If $f(v_{1(i+1)}) \ge 2$, then $v_{2(i+1)} \in B_0^2$ and define $g(u) = v_{2(i+1)}$. If $v_{1(i+1)} \in B_0$, then $f(v_{1(i+2)}) = 3$ and $v_{1(i+2)} \in B_2^3$, which is a contradiction.

Case 3: $j \ge i+4$. If $v_{1(i+1)} \in B_1$, then define $g(u) = v_{1(i+1)}$. If $f(v_{1(i+1)}) \ge 2$, then $v_{2(i+1)} \in B_0^2$ and define $g(u) = v_{2(i+1)}$. We may assume that $f(v_{1(i+1)}) = 0$. Then $2 \le f(v_{1(i+2)}) \le 3$. Since $B_2^3 = \emptyset$, $f(v_{1(i+2)}) = 2$. Without loss of generality, we may assume that $f(v_{3(i+1)}) = 0$ and $f(v_{3(i+2)}) = 2$. If $f(v_{2(i+2)}) = 1$, then define $g(u) = v_{2(i+2)}$. If $f(v_{2(i+2)}) = 0$, then $v_{2(i+2)} \in B_0^2$ and define $g(u) = v_{2(i+2)}$. If $f(v_{2(i+2)}) \ge 2$, then $v_{2(i+1)} \in B_0^2$ and define $g(u) = v_{2(i+1)}$.

Let $h = \max\{j | v_{2j} \in B_2^4\}$. If $h \le k-2$, then by a similar way as Case 3, there exists a vertex v_{ij} such that $v_{ij} \in B_0^2 \cup B_1$, where $i \in \{1, 2, 3\}$ and $j \in \{h+1, h+2\}$. So we define $g(v_{2h}) = v_{ij}$. If h = k-1, then $f(v_{1k}) = 1$ and $v_{1k} \in B_1$. So we define $g(v_{2h}) = v_{1k}$.

Hence, for any $u \in B_2^4$, there exists $w \in B_0^2 \cup B_1$ such that g(u) = w. Furthermore, for any $u, v \in B_2^4$, if $u \neq v$, then $g(u) \neq g(v)$. Hence, $|B_0^2| + |B_1| \geq |B_2^4|$. So

$$\gamma_{StR}(P_3 \Box P_k) \ge \frac{2}{3}(3k + |B_0^2| + \frac{1}{2}(|B_1| - |B_2^4|)) \ge 2k.$$

Therefore, $\gamma_{StR}(P_3 \Box P_k) = 2k$.

Lemma 3.3. For any positive integer k, $\gamma_{StR}(P_4 \Box P_k) \leq \lceil \frac{8k}{3} \rceil$.

Proof. Let $G = P_4 \Box P_k$. By Observation 2.1, if $k \equiv 0 \pmod{3}$, $\gamma_{StR}(P_4 \Box P_k) \leq \frac{8k}{3} = \lceil \frac{8k}{3} \rceil$. By Observation 2.2, if $k \equiv 1 \pmod{3}$, $\gamma_{StR}(P_4 \Box P_n) \leq \frac{4(2k+1)}{3} = \lceil \frac{8k}{3} \rceil + 1$. By Observation 2.3, if $k \equiv 2 \pmod{3}$, $\gamma_{StR}(P_4 \Box P_n) \leq \frac{4(4k+1)}{6} = \lceil \frac{8k}{3} \rceil$.

Let $G = P_4 \Box P_4$. Let $V_3 = \{v_{32}\}$, $V_2 = \{v_{11}, v_{14}, v_{44}\}$, $V_1 = \{v_{23}, v_{41}\}$ and $V_0 = V(G) \setminus (V_1 \cup V_2 \cup V_3)$. Clearly, (V_0, V_1, V_2, V_3) is a partition of V(G). Define f_4 on V(G) by $f_4(v) = i$ for any $v \in V_i$, where $0 \le i \le 3$. It is obvious that f_4 is a strong Roman dominating function of G. Therefore, $\gamma_{StR}(G) \le |f_4(V(G))| = 11 = \lceil \frac{8k}{3} \rceil$, where k = 4.

Let $G = P_4 \Box P_7$. Let $V_3 = \{v_{21}, v_{35}\}, V_2 = \{v_{13}, v_{14}, v_{17}, v_{42}, v_{43}, v_{47}\}, V_1 = \{v_{26}\}$ and $V_0 = V(G) \setminus (V_1 \cup V_2 \cup V_3)$. Clearly, (V_0, V_1, V_2, V_3) is a partition of V(G). Define f_7 on V(G) by $f_7(v) = i$ for any $v \in V_i$, where $0 \le i \le 3$. It is obvious that f_7 is a strong Roman dominating function of G. Therefore, $\gamma_{StR}(G) \le |f_7(V(G))| = 19 = \lceil \frac{8k}{3} \rceil$, where k = 7.

For $k \ge 10$, let k = 7+3t. Let $V_3 = \{v_{21}, v_{35}\}, V_2 = \{v_{13}, v_{14}, v_{17}, v_{42}, v_{43}, v_{47}\} \cup \{v_{1(2+6j)}, v_{2(4+6j)}, v_{3(4+6j)}, v_{4(2+6j)} | j = 1, 2, \cdots, \lceil \frac{t}{2} \rceil \} \cup \{v_{1(7+6j)}, v_{2(5+6j)}, v_{3(5+6j)}, v_{4(7+6j)} | j = 1, 2, \cdots, \lceil \frac{t+2}{2} \rceil - 1\}, V_1 = \{v_{26}\} \text{ and } V_0 = V(G) \setminus (V_1 \cup V_2 \cup V_3).$ Clearly, (V_0, V_1, V_2, V_3) is a partition of V(G). Define f_k on V(G) by $f_k(v) = i$ for any $v \in V_i$, where $0 \le i \le 3$. It is obvious that f_k is a strong Roman dominating function of G. Therefore, $\gamma_{StR}(G) \le |f_k(V(G))| = \lceil \frac{8k}{3} \rceil$.

Lemma 3.4. For any positive integer $k \ge 4$,

$$\gamma_{StR}(P_4 \Box P_k) \ge \begin{cases} \left\lceil \frac{8k}{3} \right\rceil & \text{if } k = 4, 5, 6, 7\\ \left\lceil \frac{1}{3}(8k - \lfloor \frac{k}{8} \rfloor + 1) \right\rceil & \text{if } k \ge 8. \end{cases}$$

Proof. Among all γ_{StR} -function of $P_4 \Box P_k$, let f be chosen so that $|B_1|$ is maximized. Then $B_2^1 = B_2^3 = \emptyset$. By inequality (2.1) in Theorem 2.5, it follows that

$$\gamma_{StR}(P_4 \Box P_k) \ge \frac{2}{3}(4k + |B_0^2| + \frac{1}{2}(|B_1| - |B_2^4|)).$$

If $B_2^4 = \emptyset$, then $\gamma_{StR}(P_4 \Box P_k) \ge \lceil \frac{8k}{3} \rceil$. Hence, we may assume that $B_2^4 \neq \emptyset$. It is obvious that $B_2^4 \subseteq \mathcal{R}_2 \cup \mathcal{R}_3$.

Claim 1. Suppose $\mathcal{C}_j \cap B_2^4 \neq \emptyset$ for $j \in \{2, 3, \dots, k-1\}$. Then $|(\mathcal{C}_{j-1} \cup \mathcal{C}_j \cup \mathcal{C}_{j+1}) \cap B_2^4| = 1$.

Proof. Without loss of generality, we can assume that $v_{2j} \in B_2^4$. Then $v_{2(j-1)}, v_{2(j+1)}, v_{3j} \in B_0$. If $v_{3(j+1)} \in B_2^4$, then $d(v_{3(j+1)}) = 4$ and $j \le k-2$. Define a function f' on V(G) by f'(x) = f(x) for $x \in V(G) - \{v_{3(j+1)}, v_{3(j+2)}, v_{4(j+1)}\}$, $f'(v_{3(j+1)}) = 1$, $f'(v_{3(j+2)}) = 1$ and $f'(v_{4(j+1)}) = 1$. Then f' is γ_{StR} -function of $P_4 \square P_k$ with $|B_1|$ more than $|B_1|$ in f, which is a contradiction. Hence $v_{3(j+1)} \notin B_2^4$. Similarly, $v_{3(j-1)} \notin B_2^4$. So, $|(C_{j-1} \cup C_j \cup C_{j+1}) \cap B_2^4| = 1$. □

Claim 2. Let $h = min\{j | v_{ij} \in B_2^4\}$. Then $(\bigcup_{1 \le i \le h} \mathfrak{C}_i) \cap (B_0^2 \cup B_1) \neq \emptyset$.

Proof. Without loss of generality, we can assume that $v_{2h} \in B_2^4$. Then $2 \le h \le k-1$. If h = 2, then $v_{11} \in B_1$. So $(\bigcup_{1 \le i \le h} C_i) \cap (B_0^2 \cup B_1) \ne \emptyset$.

Suppose that $h \geq 3$ and $(\bigcup_{1 \leq i \leq h} \mathbb{C}_i) \cap (B_0^2 \cup B_1) = \emptyset$. Hence, for any vertex $v_{ij} \in (\bigcup_{1 \leq i \leq h} \mathbb{C}_i) \setminus \{v_{2h}\}, v_{ij} \in B_0^1$ or $v_{ij} \in B_2^2$. By Claim 3 in Theorem 2.5, $v_{1(h-1)}, v_{2(h-2)}, v_{3(h-1)}, v_{4h} \in B_0^1$. In order to dominate $v_{1(h-1)}, f(v_{1(h-2)}) = 2$. Hence, $v_{3(h-2)} \in B_0^1$. In order to dominate $v_{3(h-1)}, f(v_{4(h-1)}) = 2$. Hence, $f(v_{4(h-2)}) = 2$. If h = 3, then $v_{4(h-2)} \in B_2^1$, which is a contradiction. If h = 4, then $f(v_{1(h-3)}) = 2$ and $v_{2(h-3)}, v_{3(h-3)}, v_{4(h-3)} \in B_0^1$. Then $v_{1(h-3)} \in B_2^1$, which is a contradiction. If $h \geq 5$, then $v_{1(h-4)}, v_{2(h-4)}, v_{4(h-4)} \in B_0^1$. Hence, $f(v_{3(h-4)}) = 3$ and $v_{3(h-4)} \in B_2^4$, which is a contradiction. Hence, $\bigcup_{1 \leq i \leq h} \mathbb{C}_i \cap (B_0^2 \cup B_1) \neq \emptyset$. \Box

Claim 3. Let $l = max\{j | v_{ij} \in B_2^4\}$. Then $(\bigcup_{l+1 \le i \le k} \mathfrak{C}_i) \cap (B_0^2 \cup B_1) \neq \emptyset$.

Proof. Without loss of generality, we can assume that $v_{2l} \in B_2^4$. Then $l \leq k-1$. If l = k - 1, then $v_{1k} \in B_1$. So $(\bigcup_{l+1 \leq i \leq k} C_i) \cap (B_0^2 \cup B_1) \neq \emptyset$.

Suppose that $l \leq k-2$ and $(\bigcup_{l+1 \leq i \leq k} \mathcal{C}_i) \cap (B_0^2 \cup B_1) = \emptyset$. Hence, for any vertex $v_{ij} \in (\bigcup_{l+1 \leq i \leq k} \mathcal{C}_i), v_{ij} \in B_0^1$ or $v_{ij} \in B_2^2$. Then $v_{1(l+1)}, v_{2(l+2)}, v_{3(l+1)} \in B_0^1$. In order to dominate $v_{1(l+1)}, f(v_{1(l+2)}) = 2$. Hence, $v_{3(l+2)} \in B_0^1$. In order to dominate $v_{3(l+1)}, f(v_{4(l+1)}) = 2$. If l = k-2, then $f(v_{4(l+2)}) = 2$ and $v_{4(l+2)} \in B_2^1$, which is a contradiction. If l = k-3, then $f(v_{1(l+3)}) = 2$ and $v_{2(l+3)}, v_{3(l+3)}, v_{1(l+4)}, v_{2(l+4)} \in B_0^1$. In order to dominate $v_{3(l+2)}, f(v_{4(l+2)}) = 2$ and $v_{2(l+3)}, v_{3(l+3)}, v_{1(l+4)}, v_{2(l+4)} \in B_0^1$. In order to dominate $v_{3(l+4)} \in B_2^4$, which is a contradiction. If $l \leq k-4$, then $f(v_{1(l+3)}) = 2$ and $v_{2(l+3)}, v_{3(l+3)}, v_{1(l+4)}, v_{2(l+4)} \in B_0^1$. In order to dominate $v_{3(l+4)} \in B_2^4$, which is a contradiction. \Box

Claim 4. Suppose that $\mathcal{C}_j \cap B_2^4 \neq \emptyset$, $\mathcal{C}_r \cap B_2^4 \neq \emptyset$ and $(\bigcup_{j+1 \leq i \leq r-1} \mathcal{C}_i) \cap B_2^4 = \emptyset$. If $r-j \geq 5$ or $2 \leq r-j \leq 3$, then $(\bigcup_{j+1 \leq i \leq r} \mathcal{C}_i) \cap (B_0^2 \cup B_1) \neq \emptyset$.

Proof. If $r - j \ge 5$, then $(\bigcup_{r-4 \le i \le r} \mathbb{C}_i) \cap (B_0^2 \cup B_1) \ne \emptyset$ by a similar proof as Claim 2. Since $r - j \ge 5$, $r - 4 \ge j + 1$. Hence, $(\bigcup_{j+1 \le i \le r} \mathbb{C}_i) \cap (B_0^2 \cup B_1) \ne \emptyset$.

Suppose that r-j=2. Without loss of generality, we can assume that $v_{2j} \in B_2^4$. If $v_{2(j+2)} \in B_2^4$, then $v_{2(j+1)} \in B_0^2$. So $(\bigcup_{j+1 \leq i \leq r} \mathbb{C}_i) \cap (B_0^2 \cup B_1) \neq \emptyset$. Suppose that $v_{3(j+2)} \in B_2^4$. If $f(v_{1(j+2)}) \geq 1$, then $(\bigcup_{j+1 \leq i \leq r} \mathbb{C}_i) \cap (B_0^2 \cup B_1) \neq \emptyset$. If $f(v_{1(j+2)}) = 0$, then $v_{1(j+1)} \in B_1$. So, $(\bigcup_{j+1 \leq i \leq r} \mathbb{C}_i) \cap (B_0^2 \cup B_1) \neq \emptyset$. Suppose that r-j = 3. Without loss of generality, we can assume that $v_{2j} \in B_2^4$. Assume that $v_{2(j+3)} \in B_2^4$. If $f(v_{1(j+1)}) \ge 1$ or $f(v_{1(j+2)}) \ge 1$, then $(\bigcup_{j+1 \le i \le r} \mathbb{C}_i) \cap (B_0^2 \cup B_1) \ne \emptyset$. If $f(v_{1(j+1)}) = 0$ and $f(v_{1(j+2)}) = 0$, then $v_{1(j+2)}$ is not dominated by B_2 , which is a contradiction. Hence, $(\bigcup_{j+1 \le i \le r} \mathbb{C}_i) \cap (B_0^2 \cup B_1) \ne \emptyset$.

Without loss of generality, we can assume that $v_{3(j+3)} \in B_2^4$. If $f(v_{1(j+1)}) \ge 1$, $f(v_{2(j+2)}) \ge 1$ or $f(v_{1(j+3)}) \ge 1$, then $(\bigcup_{j+1 \le i \le r} \mathbb{C}_i) \cap (B_0^2 \cup B_1) \ne \emptyset$. If $f(v_{1(j+1)}) = 0$, $f(v_{2(j+2)}) = 0$ and $f(v_{1(j+3)}) = 0$, then $f(v_{1(j+2)}) = 3$ and $v_{1(j+2)} \in B_2^3$, which is a contradiction. Hence, $(\bigcup_{j+1 \le i \le r} \mathbb{C}_i) \cap (B_0^2 \cup B_1) \ne \emptyset$. \Box

Remark. if r = j + 4, then $(\bigcup_{j+1 \le i \le r} \mathbb{C}_i) \cap (B_0^2 \cup B_1) = \emptyset$ may be hold. Assume that $v_{2j} \in B_2^4$. If $(\bigcup_{j+1 \le i \le r} \mathbb{C}_i) \cap (B_0^2 \cup B_1) = \emptyset$, then f(v) is fixed for any $v \in (\bigcup_{j \le i \le r} \mathbb{C}_i)$. That is, $v_{3(j+4)} \in B_2^4$, $\{v_{1(j+2)}, v_{1(j+3)}, v_{4(j+1)}, v_{4(j+2)}\} \subseteq B_2^2$ and $(\bigcup_{j \le i \le r} \mathbb{C}_i) \setminus \{v_{3(j+4)}, v_{2j}, v_{1(j+2)}, v_{1(j+3)}, v_{4(j+1)}, v_{4(j+2)}\} \subseteq B_0^1$.

Claim 5. Suppose that $\mathcal{C}_{j-4} \cap B_2^4 \neq \emptyset$, $\mathcal{C}_j \cap B_2^4 \neq \emptyset$, $(\bigcup_{j-3 \leq i \leq j-1} \mathcal{C}_i) \cap B_2^4 = \emptyset$ and $(\bigcup_{j-3 \leq i \leq j} \mathcal{C}_i) \cap (B_0^2 \cup B_1) = \emptyset$. If $\mathcal{C}_l \cap B_2^4 \neq \emptyset$ for $l \geq j+2$ and $(\bigcup_{j+1 \leq i \leq l-1} \mathcal{C}_i) \cap B_2^4 = \emptyset$, then $(\bigcup_{j+1 \leq i < l} \mathcal{C}_i) \cap (B_0^2 \cup B_1) \neq \emptyset$.

Proof. Assume that $v_{2(j-4)} \in B_2^4$. By remark, $v_{3j} \in B_2^4$, $v_{1(j-1)} \in B_2^2$ and $v_{1j} \in B_0^1$. If $l-j \geq 5$ or $2 \leq l-j \leq 3$, then $(\bigcup_{j+1 \leq i \leq l} \mathbb{C}_i) \cap (B_0^2 \cup B_1) \neq \emptyset$ by Claim 4. Without loss of generality, we can assume that l = j + 4. Suppose that $v_{2(j+4)} \in B_2^4$. If $v_{1(j+1)} \in B_1$, then $(\bigcup_{j+1 \leq i \leq l} \mathbb{C}_i) \cap (B_0^2 \cup B_1) \neq \emptyset$. Hence, $v_{1(j+1)} \in B_0^1$.

If $f(v_{2(j+2)}) \ge 1$ or $f(v_{1(j+3)}) \ge 1$, then $(\bigcup_{j+1 \le i \le l} \mathcal{C}_i) \cap (B_0^2 \cup B_1) \ne \emptyset$. If $f(v_{2(j+2)}) = 0$ and $f(v_{1(j+3)}) = 0$, then $v_{1(j+2)} \in B_2^3$, which is a contradiction.

Without loss of generality, we can assume that $v_{3(j+4)} \in B_2^4$. If $f(v_{4(j+1)}) \ge 1$, $f(v_{3(j+2)}) \ge 1$ or $f(v_{4(j+3)}) \ge 1$, then $(\bigcup_{j+1 \le i \le l} \mathbb{C}_i) \cap (B_0^2 \cup B_1) \ne \emptyset$. If $f(v_{4(j+1)}) = 0$, $f(v_{3(j+2)}) = 0$ and $f(v_{4(j+3)}) = 0$, then $f(v_{4(j+2)}) = 3$ and $v_{4(j+2)} \in B_2^3$, which is a contradiction.

Suppose that there exist two positive integer j and r such that $C_{j-4} \cap B_2^4 \neq \emptyset$, $C_j \cap B_2^4 \neq \emptyset$, $C_r \cap B_2^4 \neq \emptyset$, $C_{r+4} \cap B_2^4 \neq \emptyset$, $(\bigcup_{j-3 \leq i \leq j-1} C_i) \cap B_2^4 = \emptyset$, $(\bigcup_{r+1 \leq i \leq r+3} C_i) \cap B_2^4 = \emptyset$, $(\bigcup_{j+1 \leq i \leq r-1} C_i) \cap B_2^4 = \emptyset$, $(\bigcup_{j-3 \leq i \leq j} C_i) \cap (B_0^2 \cup B_1) = \emptyset$ and $(\bigcup_{r+1 \leq i \leq r+4} C_i) \cap (B_0^2 \cup B_1) = \emptyset$, where $r \geq j+2$. If $(\bigcup_{j+1 \leq i \leq r} C_i) \cap B_0^2 = \emptyset$ and $|(\bigcup_{j+1 \leq i \leq r} C_i) \cap B_1| = 1$, then $r-j \geq 4$.

Suppose that there exist a positive integer j such that $\mathcal{C}_j \cap B_2^4 \neq \emptyset$, $\mathcal{C}_{j+4} \cap B_2^4 \neq \emptyset$, $(\bigcup_{j+1 \leq i \leq j+4} \mathcal{C}_i) \cap (B_0^2 \cup B_1) = \emptyset$ and $(\bigcup_{1 \leq i \leq j-1} \mathcal{C}_i) \cap B_2^4 = \emptyset$. If $(\bigcup_{1 \leq i \leq j} \mathcal{C}_i) \cap B_0^2 = \emptyset$ and $|(\bigcup_{1 \leq i \leq j} \mathcal{C}_i) \cap B_1| = 1$, then $j \geq 3$.

By Claims 2-5, it follows that if k = 4, 5, 6 or 7, then $|B_0^2| + |B_1| - |B_2^4| \ge 0$. So, $\gamma_{StR}(P_4 \Box P_k) \ge \frac{8k}{3}$. If $k \ge 8$, then $|B_0^2| + |B_1| - |B_2^4| \ge -\lfloor \frac{k}{8} \rfloor + 1$. Hence,

$$\begin{array}{ll} \gamma_{StR}(P_4 \Box P_k) & \geq \frac{2}{3}(4k + |B_0^2| + \frac{1}{2}(|B_1| - |B_2^4|)) \\ & = \frac{8k}{3} + \frac{1}{3}(2|B_0^2| + |B_1| - |B_2^4|) \\ & \geq \frac{1}{3}(8k - \lfloor \frac{k}{8} \rfloor + 1). \end{array}$$

Therefore, the result follows, since $\gamma_{StR}(G)$ is an integer number.

By Lemma 3.3 and Lemma 3.4, we give the following.

Corollary 3.5. For positive integer $k \in \{4, 5, 6, 7\}$, $\gamma_{StR}(P_4 \Box P_k) = \lceil \frac{8k}{3} \rceil$.

Theorem 3.6. For any positive integer $k \ge 8$, $\lceil \frac{1}{3}(8k - \lfloor \frac{k}{8} \rfloor + 1) \rceil \le \gamma_{StR}(P_4 \Box P_k) \le \lceil \frac{8k}{3} \rceil$, and both bounds are sharp.

Remark 3.7. In order to show the lower bound is sharp, define a function f on $P_4 \Box P_{17}$ by

$$\begin{split} f(\mathfrak{R}_1) &= \{f(v_{11}), f(v_{12}), \cdots, f(v_{1(17)})\} = \{2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2\}, \\ f(\mathfrak{R}_2) &= \{f(v_{21}), f(v_{22}), \cdots, f(v_{2(17)})\} = \{0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0\}, \\ f(\mathfrak{R}_3) &= \{f(v_{31}), f(v_{32}), \cdots, f(v_{3(17)})\} = \{0, 1, 0, 0, 0, 0, 3, 0, 1, 0, 3, 0, 0, 0, 0, 1, 0\}, \\ f(\mathfrak{R}_4) &= \{f(v_{41}), f(v_{42}), \cdots, f(v_{4(17)})\} = \{2, 0, 0, 2, 2, 0, 0, 0, 2, 2, 0, 0, 2\}. \end{split}$$

It is obvious that f is a strong Roman dominating function of $P_4 \Box P_{17}$ and $\gamma_{StR}(P_4 \Box P_{17}) \leq 45$. Since $\lceil \frac{1}{3}(8k - \lfloor \frac{k}{8} \rfloor + 1) \rceil = 45$ for k = 17, it follows that $\gamma_{StR}(P_4 \Box P_{17}) = \lceil \frac{1}{3}(8k - \lfloor \frac{k}{8} \rfloor + 1) \rceil$.

In order to show the upper bound is sharp, define a function f on $P_4 \Box P_9$ by

$$f(\mathfrak{R}_1) = \{f(v_{11}), f(v_{12}), \cdots, f(v_{19})\} = \{2, 0, 0, 0, 2, 2, 0, 0, 2\},\$$

$$f(\mathfrak{R}_2) = \{f(v_{21}), f(v_{22}), \cdots, f(v_{29})\} = \{0, 0, 3, 0, 0, 0, 0, 1, 0\},\$$

$$f(\mathfrak{R}_3) = \{f(v_{31}), f(v_{32}), \cdots, f(v_{39})\} = \{0, 1, 0, 0, 0, 0, 3, 0, 0\},\$$

$$f(\mathfrak{R}_4) = \{f(v_{41}), f(v_{42}), \cdots, f(v_{49})\} = \{2, 0, 0, 2, 2, 0, 0, 0, 2\}.$$

It is obvious that f is a strong Roman dominating function of $P_4 \Box P_9$ and $\gamma_{StR}(P_4 \Box P_9) \leq 24 = \lceil \frac{8k}{3} \rceil$. Since $\lceil \frac{1}{3}(8k - \lfloor \frac{k}{8} \rfloor + 1) \rceil = 24$ for k = 9, it follows that $\gamma_{StR}(P_4 \Box P_9) = \lceil \frac{8k}{3} \rceil$.

Acknowledgements. This research was financially supported by Changwon National University in 2019.

References

- M P. Álvarez-Ruiz, T. Mediavilla-Gradolph, S. M. Sheikholeslami, J. C. Valenzuela-Tripodoro and I. G. Yero, On the strong Roman domination number of graphs, Discrete Appl. Math., 231(2017), 44–59.
- [2] E. J. Cockayne, P. M. Dreyer Jr., S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs, Discrete Math., 278(2004), 11–22.
- [3] C. S. ReVelle and K. E. Rosing, Defendents imperium romanum: a classical problem in military strategy, Amer. Math. Monthly, 107(7)(2000), 585–594.
- [4] I. Stewart, Defend the roman empire!, Sci. Amer., 281(6)(1999), 136-138.