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Abstract. Consider a graph G of order n and maximum degree ∆. Let f : V (G) →
{0, 1, · · · , d∆

2
e + 1} be a function that labels the vertices of G. Let B0 = {v ∈ V (G) :

f(v) = 0}. The function f is a strong Roman dominating function for G if every v ∈ B0

has a neighbor w such that f(w) ≥ 1+d 1
2
|N(w)∩B0|e. In this paper, we study the bounds

on strong Roman domination numbers of the Cartesian product Pm�Pk of paths Pm and

paths Pk. We compute the exact values for the strong Roman domination number of the

Cartesian product P2�Pk and P3�Pk. We also show that the strong Roman domination

number of the Cartesian product P4�Pk is between d 1
3
(8k−b k

8
c+ 1)e and d 8k

3
e for k ≥ 8,

and that both bounds are sharp bounds.

1. Introduction

Graph theory terminology not presented here can be found in [1]. Let G =
(V,E) be a graph with |V | = n. The degree, neighborhood and closed neighborhood
of a vertex v in the graph G are denoted by dG(v), NG(v) and NG[v] = NG(v)∪{v},
respectively. If the graph G is clear from context, we simply write d(v), N(v) and
N [v], respectively. The minimum degree and maximum degree of the graph G are
denoted by δ(G) and ∆(G), respectively. The diameter diam(G) of a connected
graph G is the maximum distance between two vertices of G. The graph induced
by S ⊆ V is denoted by G[S]. A path on n vertices is denoted by Pn.
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For two graphs G1 and G2, the Cartesian product G1�G2 is the graph with
vertex set V (G1)×V (G2), where vertex (u1, v1) is adjacent to vertex (u2, v2) if and
only if either u1 = u2 and v1v2 ∈ E(G2) or v1 = v2 and u1u2 ∈ E(G1). G = Pm�Pk

is called a grid graph.

Let {vij |1 ≤ i ≤ m, 1 ≤ j ≤ k} be the vertex set of G = Pm�Pk so that the
subgraph induced by Ri = {vi1, vi2, · · · , vik} is isomorphic to the path Pk for each
1 ≤ i ≤ m and the subgraph induced by Cj = {v1j , v2j , · · · , vmj} is isomorphic to
the path Pm for each 1 ≤ j ≤ k.

A set S ⊆ V in a graph G is called a dominating set if N [S] = V . The
domination number γ(G) equals the minimum cardinality of a dominating set in G.
A dominating set of G with cardinality γ(G) is called a γ-set of G.

Let f : V → {0, 1, 2} be a function having the property that for every vertex v ∈
V with f(v) = 0, there exists a neighbor u ∈ N(v) with f(u) = 2. Such a function is
called a Roman dominating function. The weight of a Roman dominating function is
the sum f(V ) =

∑
v∈V f(v). The minimum weight of a Roman dominating function

on G is called the Roman domination number of G and is denoted γR(G). Roman
domination was defined and discussed by Stewart [4] in 1999. It was developed by
ReVelle and Rosing [3] in 2000 and Cockayne et al. [2] in 2004. In order to deal
with multiple simultaneous attacks, Álvarez-Ruiz et al. [1] in 2017 initiated the
study of a new parameter related to Roman dominating function, which is called
strong Roman domination.

Consider a graph G of order n and maximum degree ∆. Let f : V (G) →
{0, 1, · · · , d∆

2 e + 1} be a function that labels the vertices of G. Let B0 = {v ∈ V :
f(v) = 0}. Then f is a strong Roman dominating function for G, if every v ∈ B0 has
a neighbor w, such that f(w) ≥ 1 + d 1

2 |N(w)∩B0|e. The weight of a strong Roman
dominating function is the sum f(V ) =

∑
v∈V f(v). The minimum weight of a

strong Roman dominating function on G is called the strong Roman domination
number of G and is denoted γStR(G). A strong Roman dominating function of
G with weight γStR(G) is called a γStR-function of G. For any S ⊆ V , define
f(S) =

∑
v∈S f(v). Let f be a γStR-function of G. Let B2 = {v ∈ V : f(v) ≥ 2}.

For any v ∈ B0, there exists a vertex u ∈ B2 such that vu ∈ E(G). We say that v
is dominated by u or by B2. If f is a strong Roman dominating function of G, then
every vertex in B0 is dominated by some vertex in B2.

In this paper, we study the bounds on strong Roman domination numbers of the
Cartesian product Pm�Pk of paths Pm and paths Pk. Exact values for the strong
Roman domination number of the Cartesian product P2�Pk and P3�Pk are found,
and it is shown that for the strong Roman domination number of the Cartesian
product P4�Pk this number is between d 1

3 (8k − bk8 c+ 1)e and d 8k
3 e for k ≥ 8, and

both bounds are sharp bounds.

2. Bounds of Strong Roman Domination Number of Pm�Pk

In this section, we present upper and lower bounds on the strong Roman dom-
ination number of the Cartesian product of paths Pm and paths Pk.
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Observation 2.1. For any positive integers m, k such that k ≡ 0(mod 3),
γStR(Pm�Pk) ≤ 2mk

3 .

Proof. Let G = Pm�Pk, where k = 3t for a positive integer t. Let V2 = {vij |1 ≤
i ≤ m, j = 3l − 1, 1 ≤ l ≤ t}, V1 = ∅ and V0 = V (G) \ (V1 ∪ V2). Clearly,
(V0, V1, V2) is a partition of V (G). Define f on V (G) by f(v) = i for any v ∈ Vi,
where 0 ≤ i ≤ 2. It is obvious that f is a strong Roman dominating function of G.
Therefore, γStR(G) ≤ |f(V (G))| = 2mk

3 . 2

Observation 2.2. For any positive integers m, k such that k ≡ 1(mod 3),

γStR(Pm�Pk) ≤ m(2k+1)
3 .

Proof. Let G = Pm�Pk, where k = 3t + 1 for a positive integer t. Let
V2 = {vij |1 ≤ i ≤ m, j = 3l − 1, 1 ≤ l ≤ t}, V1 = {vik|1 ≤ i ≤ m} and
V0 = V (G) \ (V1 ∪ V2). Clearly, (V0, V1, V2) is a partition of V (G). Define f on
V (G) by f(v) = i for any v ∈ Vi, where 0 ≤ i ≤ 2. It is obvious that f is a strong

Roman dominating function of G. Therefore, γStR(G) ≤ |f(V (G))| = m(2k+1)
3 . 2

Observation 2.3. For any positive integers m, k such that k ≡ 2(mod 3), then

γStR(Pm�Pk) ≤

{
m(4k+1)

6 if m ≡ 0 (mod 2)
m(4k+1)+3

6 if m ≡ 1 (mod 2).

Proof. Let G = Pm�Pk, where k = 3t + 2 for a positive integer t. Suppose
m ≡ 0 (mod 2). Let V2 = {vij |1 ≤ i ≤ m, j = 3l − 1, 1 ≤ l ≤ t} ∪ {vjk|j =
4l + 1, 0 ≤ l ≤ bm−1

4 c} ∪ {vjk|j = 4l, 1 ≤ l ≤ bm4 c}, V1 = {vj(k−1)|j = 4l + 2, 0 ≤
l ≤ bm−1

4 c} ∪ {vj(k−1)|j = 4l− 1, 1 ≤ l ≤ bm4 c} and V0 = V (G) \ (V1 ∪ V2). Clearly,
(V0, V1, V2) is a partition of V (G). Define f on V (G) by f(v) = i for any v ∈ Vi,
where 0 ≤ i ≤ 2. It is obvious that f is a strong Roman dominating function of G.

Therefore, γStR(G) ≤ f(V (G)) = m(4k+1)
6 .

Suppose that m ≡ 1 (mod 2). Let V2 = {vij |1 ≤ i ≤ m, j = 3l − 1, 1 ≤ l ≤
t}∪{vjk|j = 4l+1, 0 ≤ l ≤ bm−2

4 c}∪{vjk|j = 4l, 1 ≤ l ≤ bm−1
4 c}, V1 = {vj(k−1)|j =

4l + 2, 0 ≤ l ≤ bm−2
4 c} ∪ {vj(k−1)|j = 4l − 1, 1 ≤ l ≤ bm−1

4 c} ∪ {vm(k−1), vmk} and
V0 = V (G) \ (V1 ∪ V2). Clearly, (V0, V1, V2) is a partition of V (G). Define f on
V (G) by f(v) = i for any v ∈ Vi, where 0 ≤ i ≤ 2. It is obvious that f is a strong

Roman dominating function of G. Therefore, γStR(G) ≤ f(V (G)) = m(4k+1)+3
6 . 2

Lemma 2.4.([1]) Let G be a connected graph of order n. Then γStR(G) ≥ dn+1
2 e.

By the following result, we improve the above result for a connected graph G
with ∆(G) ≤ 4.

Theorem 2.5. Let G be a connected graph of order n with ∆(G) ≤ 4. Then
γStR(G) ≥ d 3n

5 e.
Proof. Let f be a γStR-function of G, and let B0 = {w ∈ V (G)| f(w) = 0},
B1 = {w ∈ V (G)| f(w) = 1} and B2 = {w ∈ V (G)| f(w) ≥ 2}. Let Bi

2 = {w ∈
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B2| |N(w) ∩ B0| = i} for i = 1, 2, 3, 4. Let B1
0 = {w ∈ B0| |N(w) ∩ B2| = 1} and

B2
0 = {w ∈ B0| |N(w) ∩ B2| ≥ 2}. Clearly (B0, B1, B2) is a partition of V (G),

(B1
2 , B

2
2 , B

3
2 , B

4
2) is a partition of B2 and (B1

0 , B
2
0) is a partition of B0. Hence,

n = |B0| + |B1| + |B2|, |B2| = |B1
2 | + |B2

2 | + |B3
2 | + |B4

2 | and |B0| = |B1
0 | + |B2

0 |.
Among all γStR-function of G, let f be chosen so that |B1| is maximized.

Claim 1. B1
2 = ∅.

Proof. Suppose that B1
2 6= ∅. Say v ∈ B1

2 and N(v)∩B0 = {u}. Define f ′ on V (G)
by f ′(x) = f(x) for x ∈ V (G)− {u, v}, f ′(u) = 1 and f ′(v) = 1. Obviously f ′ is a
γStR-function of G with |B1| more than f , which is a contradiction. 2

Claim 2. B3
2 = ∅.

Proof. Suppose that B3
2 6= ∅. Say v ∈ B3

2 and N(v)∩B0 = {u1, u2, u3}. Define f ′ on
V (G) by f ′(x) = f(x) for x ∈ V (G)−{u1, v}, f ′(u1) = 1 and f ′(v) = 2. Obviously
f ′ is a γStR-function of G with |B1| more than f , which is a contradiction. 2

Claim 3. Let u ∈ B2
2 . Then N(u) ∩B0 ⊆ B1

0 .

Proof. Say N(u)∩B0 = {w1, w2}. Suppose that w1 /∈ B1
0 . So w1 ∈ B2

0 . Define f ′ on
V (G) by f ′(x) = f(x) for x ∈ V (G)−{u,w2}, f ′(u) = 1 and f ′(w2) = 1. Obviously
f ′ is a γStR-function of G with |B1| more than f , which is a contradiction. 2

By Claim 1, |B2| = |B2
2 | + |B4

2 |. Let E(B0, B2) denote the edge set between
B0 and B2. It is obvious that |B1

0 | + 2|B2
0 | ≤ |E(B0, B2)| ≤ 2|B2

2 | + 4|B4
2 |. So,

|B0|+ |B2
0 | ≤ 2|B2

2 |+ 4|B4
2 |. Hence, n+ |B2

0 | ≤ |B1|+ 3|B2
2 |+ 5|B4

2 |. Hence

γStR(G) = |B1|+ 2|B2
2 |+ 3|B4

2 |

=
2

3
(n+

1

2
|B1|+ 2|B2

2 |+
7

2
|B4

2 | − |B0|)

≥ 2

3
(n+ |B2

0 |+
1

2
(|B1| − |B4

2 |)).(2.1)

and

γStR(G) = |B1|+ 2|B2
2 |+ 3|B4

2 |

= |B1|+ 3(
2|B2

2 |
3

) + 5(
3|B4

2 |
5

)

≥ 3

5
(|B1|+ 3|B2

2 |+ 5|B4
2 |)

≥ 3

5
(n+ |B2

0 |)

≥ 3

5
n.

Therefore, the result follows, since γStR(G) is an integer number. 2
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3. Strong Roman Domination Number of Pm�Pk

In this section, we investigate the strong Roman domination number of Pm�Pk.

Theorem 3.1. For any positive integer k, γStR(P2�Pk) = d 4k
3 e.

Proof. By Observation 2.1, if k ≡ 0(mod 3), γStR(P2�Pk) ≤ 4k
3 = d 4k

3 e. By

Observation 2.2, if k ≡ 1(mod 3), γStR(P2�Pk) ≤ 2(2k+1)
3 = d 4k

3 e. By Obser-

vation 2.3, if k ≡ 2(mod 3), γStR(P2�Pk) ≤ 4k+1
3 = d 4k

3 e. Hence, in any case,

γStR(P2�Pk) ≤ d 4k
3 e. Among all γStR-function of P2�Pk, let f be chosen so that

|B1| is maximized.
It is obvious that B4

2 = ∅. By inequality (2.1) in Theorem 2.5, it follows that

γStR(P2�Pk) ≥ 2
3 (2k + |B2

0 |+ 1
2 |B1|)

≥ d 4k
3 e.

Therefore, γStR(P2�Pk) = d 4k
3 e. 2

Theorem 3.2. For any positive integer k, γStR(P3�Pk) = 2k.

Proof. By Observation 2.1, γStR(P3�Pk) = γStR(Pk�P3) ≤ 2k.
Among all γStR-function of P3�Pk, let f be chosen so that |B1| is maximized.

By Claim 2 in Theorem 2.5, B3
2 = ∅.

By inequality (2.1) in Theorem 2.5, it follows that

γStR(P3�Pk) ≥ 2

3
(3k + |B2

0 |+
1

2
(|B1| − |B4

2 |)).

In order to prove γStR(P3�Pk) ≥ 2k, it is sufficient to prove that 2|B2
0 |+|B1| ≥ |B4

2 |.
If B4

2 = ∅, then it holds obviously. Hence, we may assume that B4
2 6= ∅. It is obvious

that B4
2 ⊆ R2. Now we define a function g : B4

2 → B2
0 ∪B1 as follows:

For any u, v ∈ B4
2 , d(u, v) ≥ 2. Suppose that u = v2i, v = v2j and

(
⋃

i+1≤l≤j−1 Cl) ∩ B4
2 = ∅, where j − i ≥ 2. We discuss it from the following

cases.

Case 1: j = i + 2. That is u = v2i and v = v2(i+2). Then v2(i+1) ∈ B2
0 . Define

g(u) = v2(i+1).

Case 2: j = i + 3. That is u = v2i and v = v2(i+3). If v1(i+1) ∈ B1, then define
g(u) = v1(i+1). If f(v1(i+1)) ≥ 2, then v2(i+1) ∈ B2

0 and define g(u) = v2(i+1). If
v1(i+1) ∈ B0, then f(v1(i+2)) = 3 and v1(i+2) ∈ B3

2 , which is a contradiction.

Case 3: j ≥ i+4. If v1(i+1) ∈ B1, then define g(u) = v1(i+1). If f(v1(i+1)) ≥ 2, then
v2(i+1) ∈ B2

0 and define g(u) = v2(i+1). We may assume that f(v1(i+1)) = 0. Then
2 ≤ f(v1(i+2)) ≤ 3. Since B3

2 = ∅, f(v1(i+2)) = 2. Without loss of generality, we
may assume that f(v3(i+1)) = 0 and f(v3(i+2)) = 2. If f(v2(i+2)) = 1, then define
g(u) = v2(i+2). If f(v2(i+2)) = 0, then v2(i+2) ∈ B2

0 and define g(u) = v2(i+2). If
f(v2(i+2)) ≥ 2, then v2(i+1) ∈ B2

0 and define g(u) = v2(i+1).
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Let h = max{j|v2j ∈ B4
2}. If h ≤ k − 2, then by a similar way as Case 3, there

exists a vertex vij such that vij ∈ B2
0 ∪B1, where i ∈ {1, 2, 3} and j ∈ {h+1, h+2}.

So we define g(v2h) = vij . If h = k− 1, then f(v1k) = 1 and v1k ∈ B1. So we define
g(v2h) = v1k.

Hence, for any u ∈ B4
2 , there exists w ∈ B2

0 ∪ B1 such that g(u) = w. Further-
more, for any u, v ∈ B4

2 , if u 6= v, then g(u) 6= g(v). Hence, |B2
0 | + |B1| ≥ |B4

2 |.
So

γStR(P3�Pk) ≥ 2

3
(3k + |B2

0 |+
1

2
(|B1| − |B4

2 |)) ≥ 2k.

Therefore, γStR(P3�Pk) = 2k. 2

Lemma 3.3. For any positive integer k, γStR(P4�Pk) ≤ d 8k
3 e.

Proof. Let G = P4�Pk. By Observation 2.1, if k ≡ 0(mod 3), γStR(P4�Pk) ≤ 8k
3 =

d 8k
3 e. By Observation 2.2, if k ≡ 1(mod 3), γStR(P4�Pn) ≤ 4(2k+1)

3 = d 8k
3 e+ 1. By

Observation 2.3, if k ≡ 2(mod 3), γStR(P4�Pn) ≤ 4(4k+1)
6 = d 8k

3 e.
Let G = P4�P4. Let V3 = {v32}, V2 = {v11, v14, v44}, V1 = {v23, v41} and

V0 = V (G)\ (V1∪V2∪V3). Clearly, (V0, V1, V2, V3) is a partition of V (G). Define f4

on V (G) by f4(v) = i for any v ∈ Vi, where 0 ≤ i ≤ 3. It is obvious that f4 is a strong
Roman dominating function of G. Therefore, γStR(G) ≤ |f4(V (G))| = 11 = d 8k

3 e,
where k = 4.

Let G = P4�P7. Let V3 = {v21, v35}, V2 = {v13, v14, v17, v42, v43, v47}, V1 =
{v26} and V0 = V (G) \ (V1 ∪ V2 ∪ V3). Clearly, (V0, V1, V2, V3) is a partition of
V (G). Define f7 on V (G) by f7(v) = i for any v ∈ Vi, where 0 ≤ i ≤ 3. It is
obvious that f7 is a strong Roman dominating function of G. Therefore, γStR(G) ≤
|f7(V (G))| = 19 = d 8k

3 e, where k = 7.
For k ≥ 10, let k = 7+3t. Let V3 = {v21, v35}, V2 = {v13, v14, v17, v42, v43, v47} ∪

{v1(2+6j), v2(4+6j), v3(4+6j), v4(2+6j)|j = 1, 2, · · · , d t2e} ∪ {v1(7+6j), v2(5+6j), v3(5+6j),

v4(7+6j)|j = 1, 2, · · · , d t+1
2 e−1}, V1 = {v26} and V0 = V (G)\(V1∪V2∪V3). Clearly,

(V0, V1, V2, V3) is a partition of V (G). Define fk on V (G) by fk(v) = i for any v ∈ Vi,
where 0 ≤ i ≤ 3. It is obvious that fk is a strong Roman dominating function of
G. Therefore, γStR(G) ≤ |fk(V (G))| = d 8k

3 e. 2

Lemma 3.4. For any positive integer k ≥ 4,

γStR(P4�Pk) ≥
{
d 8k

3 e if k = 4, 5, 6, 7
d 1

3 (8k − bk8 c+ 1)e if k ≥ 8.

Proof. Among all γStR-function of P4�Pk, let f be chosen so that |B1| is maximized.
Then B1

2 = B3
2 = ∅. By inequality (2.1) in Theorem 2.5, it follows that

γStR(P4�Pk) ≥ 2

3
(4k + |B2

0 |+
1

2
(|B1| − |B4

2 |)).

If B4
2 = ∅, then γStR(P4�Pk) ≥ d 8k

3 e. Hence, we may assume that B4
2 6= ∅. It

is obvious that B4
2 ⊆ R2 ∪ R3.
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Claim 1. Suppose Cj ∩B4
2 6= ∅ for j ∈ {2, 3, · · · , k−1}. Then |(Cj−1∪Cj ∪Cj+1)∩

B4
2 | = 1.

Proof. Without loss of generality, we can assume that v2j ∈ B4
2 . Then

v2(j−1), v2(j+1), v3j ∈ B0. If v3(j+1) ∈ B4
2 , then d(v3(j+1)) = 4 and j ≤ k− 2. Define

a function f ′ on V (G) by f ′(x) = f(x) for x ∈ V (G) − {v3(j+1), v3(j+2), v4(j+1)},
f ′(v3(j+1)) = 1, f ′(v3(j+2)) = 1 and f ′(v4(j+1)) = 1. Then f ′ is γStR-function of
P4�Pk with |B1| more than |B1| in f , which is a contradiction. Hence v3(j+1) /∈ B4

2 .
Similarly, v3(j−1) /∈ B4

2 . So, |(Cj−1 ∪ Cj ∪ Cj+1) ∩B4
2 | = 1. 2

Claim 2. Let h = min{j|vij ∈ B4
2}. Then (

⋃
1≤i≤h Ci) ∩ (B2

0 ∪B1) 6= ∅.
Proof. Without loss of generality, we can assume that v2h ∈ B4

2 . Then 2 ≤ h ≤ k−1.
If h = 2, then v11 ∈ B1. So (

⋃
1≤i≤h Ci) ∩ (B2

0 ∪B1) 6= ∅.
Suppose that h ≥ 3 and (

⋃
1≤i≤h Ci) ∩ (B2

0 ∪ B1) = ∅. Hence, for any vertex

vij ∈ (
⋃

1≤i≤h Ci) \ {v2h}, vij ∈ B1
0 or vij ∈ B2

2 . By Claim 3 in Theorem 2.5,

v1(h−1), v2(h−2), v3(h−1), v4h ∈ B1
0 . In order to dominate v1(h−1), f(v1(h−2)) = 2.

Hence, v3(h−2) ∈ B1
0 . In order to dominate v3(h−1), f(v4(h−1)) = 2. Hence,

f(v4(h−2)) = 2. If h = 3, then v4(h−2) ∈ B1
2 , which is a contradiction. If h = 4, then

f(v1(h−3)) = 2 and v2(h−3), v3(h−3), v4(h−3) ∈ B1
0 . Then v1(h−3) ∈ B1

2 , which is a
contradiction. If h ≥ 5, then v1(h−4), v2(h−4), , v4(h−4) ∈ B1

0 . Hence, f(v3(h−4)) = 3
and v3(h−4) ∈ B4

2 , which is a contradiction. Hence,
⋃

1≤i≤h Ci ∩ (B2
0 ∪B1) 6= ∅. 2

Claim 3. Let l = max{j|vij ∈ B4
2}. Then (

⋃
l+1≤i≤k Ci) ∩ (B2

0 ∪B1) 6= ∅.
Proof. Without loss of generality, we can assume that v2l ∈ B4

2 . Then l ≤ k − 1. If
l = k − 1, then v1k ∈ B1. So (

⋃
l+1≤i≤k Ci) ∩ (B2

0 ∪B1) 6= ∅.
Suppose that l ≤ k − 2 and (

⋃
l+1≤i≤k Ci) ∩ (B2

0 ∪ B1) = ∅. Hence, for any

vertex vij ∈ (
⋃

l+1≤i≤k Ci), vij ∈ B1
0 or vij ∈ B2

2 . Then v1(l+1), v2(l+2), v3(l+1) ∈ B1
0 .

In order to dominate v1(l+1), f(v1(l+2)) = 2. Hence, v3(l+2) ∈ B1
0 . In order to

dominate v3(l+1), f(v4(l+1)) = 2. If l = k− 2, then f(v4(l+2)) = 2 and v4(l+2) ∈ B1
2 ,

which is a contradiction. If l = k − 3, then f(v1(l+3)) = 2 and v2(l+3), v3(l+3) ∈ B1
0 .

So, v1(l+3) ∈ B1
2 , which is a contradiction. If l ≤ k − 4, then f(v1(l+3)) = 2 and

v2(l+3), v3(l+3), v1(l+4), v2(l+4) ∈ B1
0 . In order to dominate v3(l+2), f(v4(l+2)) = 2.

Hence, v4(l+3), v4(l+4) ∈ B1
0 . Hence, f(v3(l+4)) = 3 and v3(l+4) ∈ B4

2 , which is a
contradiction. 2

Claim 4. Suppose that Cj ∩ B4
2 6= ∅, Cr ∩ B4

2 6= ∅ and (
⋃

j+1≤i≤r−1 Ci) ∩ B4
2 = ∅.

If r − j ≥ 5 or 2 ≤ r − j ≤ 3, then (
⋃

j+1≤i≤r Ci) ∩ (B2
0 ∪B1) 6= ∅.

Proof. If r− j ≥ 5, then (
⋃

r−4≤i≤r Ci)∩ (B2
0 ∪B1) 6= ∅ by a similar proof as Claim

2. Since r − j ≥ 5, r − 4 ≥ j + 1. Hence, (
⋃

j+1≤i≤r Ci) ∩ (B2
0 ∪B1) 6= ∅.

Suppose that r−j = 2. Without loss of generality, we can assume that v2j ∈ B4
2 .

If v2(j+2) ∈ B4
2 , then v2(j+1) ∈ B2

0 . So (
⋃

j+1≤i≤r Ci) ∩ (B2
0 ∪ B1) 6= ∅. Suppose

that v3(j+2) ∈ B4
2 . If f(v1(j+2)) ≥ 1, then (

⋃
j+1≤i≤r Ci) ∩ (B2

0 ∪ B1) 6= ∅. If

f(v1(j+2)) = 0, then v1(j+1) ∈ B1. So, (
⋃

j+1≤i≤r Ci) ∩ (B2
0 ∪B1) 6= ∅.



522 X.-G. Chen and M. Y. Sohn

Suppose that r−j = 3. Without loss of generality, we can assume that v2j ∈ B4
2 .

Assume that v2(j+3) ∈ B4
2 . If f(v1(j+1)) ≥ 1 or f(v1(j+2)) ≥ 1, then (

⋃
j+1≤i≤r Ci)∩

(B2
0 ∪B1) 6= ∅. If f(v1(j+1)) = 0 and f(v1(j+2)) = 0, then v1(j+2) is not dominated

by B2, which is a contradiction. Hence, (
⋃

j+1≤i≤r Ci) ∩ (B2
0 ∪B1) 6= ∅.

Without loss of generality, we can assume that v3(j+3) ∈ B4
2 . If f(v1(j+1)) ≥ 1,

f(v2(j+2)) ≥ 1 or f(v1(j+3)) ≥ 1, then (
⋃

j+1≤i≤r Ci)∩(B2
0∪B1) 6= ∅. If f(v1(j+1)) =

0, f(v2(j+2)) = 0 and f(v1(j+3)) = 0, then f(v1(j+2)) = 3 and v1(j+2) ∈ B3
2 , which

is a contradiction. Hence, (
⋃

j+1≤i≤r Ci) ∩ (B2
0 ∪B1) 6= ∅. 2

Remark. if r = j + 4, then (
⋃

j+1≤i≤r Ci) ∩ (B2
0 ∪ B1) = ∅ may be hold. Assume

that v2j ∈ B4
2 . If (

⋃
j+1≤i≤r Ci) ∩ (B2

0 ∪ B1) = ∅, then f(v) is fixed for any v ∈
(
⋃

j≤i≤r Ci). That is, v3(j+4) ∈ B4
2 , {v1(j+2), v1(j+3), v4(j+1), v4(j+2)} ⊆ B2

2 and

(
⋃

j≤i≤r Ci) \ {v3(j+4), v2j , v1(j+2), v1(j+3), v4(j+1), v4(j+2)} ⊆ B1
0 .

Claim 5. Suppose that Cj−4 ∩B4
2 6= ∅, Cj ∩B4

2 6= ∅, (
⋃

j−3≤i≤j−1 Ci)∩B4
2 = ∅ and

(
⋃

j−3≤i≤j Ci)∩(B2
0∪B1) = ∅. If Cl∩B4

2 6= ∅ for l ≥ j+2 and (
⋃

j+1≤i≤l−1 Ci)∩B4
2 =

∅, then (
⋃

j+1≤i≤l Ci) ∩ (B2
0 ∪B1) 6= ∅.

Proof. Assume that v2(j−4) ∈ B4
2 . By remark, v3j ∈ B4

2 , v1(j−1) ∈ B2
2 and v1j ∈ B1

0 .
If l−j ≥ 5 or 2 ≤ l−j ≤ 3, then (

⋃
j+1≤i≤l Ci)∩(B2

0∪B1) 6= ∅ by Claim 4. Without

loss of generality, we can assume that l = j + 4. Suppose that v2(j+4) ∈ B4
2 . If

v1(j+1) ∈ B1, then (
⋃

j+1≤i≤l Ci) ∩ (B2
0 ∪B1) 6= ∅. Hence, v1(j+1) ∈ B1

0 .

If f(v2(j+2)) ≥ 1 or f(v1(j+3)) ≥ 1, then (
⋃

j+1≤i≤l Ci) ∩ (B2
0 ∪ B1) 6= ∅. If

f(v2(j+2)) = 0 and f(v1(j+3)) = 0, then v1(j+2) ∈ B3
2 , which is a contradiction.

Without loss of generality, we can assume that v3(j+4) ∈ B4
2 . If f(v4(j+1)) ≥ 1,

f(v3(j+2)) ≥ 1 or f(v4(j+3)) ≥ 1, then (
⋃

j+1≤i≤l Ci)∩(B2
0∪B1) 6= ∅. If f(v4(j+1)) =

0, f(v3(j+2)) = 0 and f(v4(j+3)) = 0, then f(v4(j+2)) = 3 and v4(j+2) ∈ B3
2 , which

is a contradiction. 2

Suppose that there exist two positive integer j and r such that Cj−4 ∩B4
2 6= ∅,

Cj ∩ B4
2 6= ∅, Cr ∩ B4

2 6= ∅, Cr+4 ∩ B4
2 6= ∅, (

⋃
j−3≤i≤j−1 Ci) ∩ B4

2 = ∅,
(
⋃

r+1≤i≤r+3 Ci)∩B4
2 = ∅, (

⋃
j+1≤i≤r−1 Ci)∩B4

2 = ∅, (
⋃

j−3≤i≤j Ci)∩(B2
0 ∪B1) = ∅

and (
⋃

r+1≤i≤r+4 Ci) ∩ (B2
0 ∪ B1) = ∅, where r ≥ j + 2. If (

⋃
j+1≤i≤r Ci) ∩ B2

0 = ∅
and |(

⋃
j+1≤i≤r Ci) ∩B1| = 1, then r − j ≥ 4.

Suppose that there exist a positive integer j such that Cj∩B4
2 6= ∅, Cj+4∩B4

2 6= ∅,
(
⋃

j+1≤i≤j+4 Ci)∩(B2
0∪B1) = ∅ and (

⋃
1≤i≤j−1 Ci)∩B4

2 = ∅. If (
⋃

1≤i≤j Ci)∩B2
0 = ∅

and |(
⋃

1≤i≤j Ci) ∩B1| = 1, then j ≥ 3.

By Claims 2-5, it follows that if k = 4, 5, 6 or 7, then |B2
0 | + |B1| − |B4

2 | ≥ 0.
So, γStR(P4�Pk) ≥ 8k

3 . If k ≥ 8, then |B2
0 |+ |B1| − |B4

2 | ≥ −bk8 c+ 1. Hence,

γStR(P4�Pk) ≥ 2
3 (4k + |B2

0 |+ 1
2 (|B1| − |B4

2 |))
= 8k

3 + 1
3 (2|B2

0 |+ |B1| − |B4
2 |)

≥ 1
3 (8k − bk8 c+ 1).

Therefore, the result follows, since γStR(G) is an integer number. 2
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By Lemma 3.3 and Lemma 3.4, we give the following.

Corollary 3.5. For positive integer k ∈ {4, 5, 6, 7}, γStR(P4�Pk) = d 8k
3 e.

Theorem 3.6. For any positive integer k ≥ 8, d 1
3 (8k−bk8 c+1)e ≤ γStR(P4�Pk) ≤

d 8k
3 e, and both bounds are sharp.

Remark 3.7. In order to show the lower bound is sharp, define a function f on
P4�P17 by

f(R1) = {f(v11), f(v12), · · · , f(v1(17))} = {2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2},
f(R2) = {f(v21), f(v22), · · · , f(v2(17))} = {0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0},
f(R3) = {f(v31), f(v32), · · · , f(v3(17))} = {0, 1, 0, 0, 0, 0, 3, 0, 1, 0, 3, 0, 0, 0, 0, 1, 0},
f(R4) = {f(v41), f(v42), · · · , f(v4(17))} = {2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2}.

It is obvious that f is a strong Roman dominating function of P4�P17 and
γStR(P4�P17) ≤ 45. Since d 1

3 (8k − bk8 c + 1)e = 45 for k = 17, it follows that

γStR(P4�P17) = d 1
3 (8k − bk8 c+ 1)e.

In order to show the upper bound is sharp, define a function f on P4�P9 by

f(R1) = {f(v11), f(v12), · · · , f(v19)} = {2, 0, 0, 0, 2, 2, 0, 0, 2},
f(R2) = {f(v21), f(v22), · · · , f(v29)} = {0, 0, 3, 0, 0, 0, 0, 1, 0},
f(R3) = {f(v31), f(v32), · · · , f(v39)} = {0, 1, 0, 0, 0, 0, 3, 0, 0},
f(R4) = {f(v41), f(v42), · · · , f(v49)} = {2, 0, 0, 2, 2, 0, 0, 0, 2}.

It is obvious that f is a strong Roman dominating function of P4�P9 and
γStR(P4�P9) ≤ 24 = d 8k

3 e. Since d 1
3 (8k − bk8 c + 1)e = 24 for k = 9, it follows

that γStR(P4�P9) = d 8k
3 e.
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