DOI QR코드

DOI QR Code

Spatial Variation in Land Use and Topographic Effects on Water Quality at the Geum River Watershed

토지이용과 지형이 수질에 미치는 영향의 공간적 변동성에 관한 연구 - 금강 권역을 중심으로

  • Park, Se-Rin (Department of Forestry and Landscape Architecture, Konkuk University) ;
  • Choi, Kwan-Mo (Department of Forestry and Landscape Architecture, Konkuk University) ;
  • Lee, Sang-Woo (Department of Forestry and Landscape Architecture, Konkuk University)
  • Received : 2019.05.30
  • Accepted : 2019.06.15
  • Published : 2019.06.30

Abstract

In this study, we investigated the spatial variation in land use and topographic effects on water quality at the Geum river watershed in South Korea, using the ordinary least squares(OLS) and geographically weighted regression (GWR) models. Understanding the complex interactions between land use, slope, elevation, and water quality is essential for water pollution control and watershed management. We monitored four water quality indicators -total phosphorus, total nitrogen, biochemical oxygen demand, and dissolved oxygen levels - across three land use types (urban, agricultural, and forested) and two topographic features (elevation and mean slope). Results from GWR modeling revealed that land use and topography did not affect water quality consistently through space, but instead exhibited substantial spatial non-stationarity. The GWR model performed better than the OLS model as it produced a higher adjusted $R^2$ value. Spatial variation in interactions among variables could be visualized by mapping $R^2$ values from the GWR model at fine spatial resolution. Using the GWR model, we were able to identify local pollution sources, determine habitat status, and recommend appropriate land-use planning policies for watershed management.

본 연구는 금강 권역을 대상으로 일반최소자승법(OLS)과 공간지리 가중회귀모형(GWR)을 적용하여 유역 내 토지이용과 지형적 특성이 BOD, DO, TN, TP을 포함한 수질에 미치는 영향을 알아보고자 하였다. 일반적으로 OLS는 변수 간의 관계가 균일하다는 가정에 기초하고 있으며, 지역적인 변화를 고려하지 않는다는 한계가 있다. 따라서 본 연구에서는 변수 간의 관계가 지역적으로 다르게 나타나는 것을 검증하기 위해 GWR을 이용하여 분석하였다. 종속변수인 총 4개의 수질 측정 항목(BOD, DO, TN, TP)과 독립변수인 토지이용 비율(도시, 농업 및 산림지역) 및 지형(고도, 평균 경사)에 대하여 OLS와 GWR 모형을 각각 추정하고, 비교하였다. GWR 모형의 $R^2$와 회귀계수 값의 기초 통계량을 분석한 결과, 공간적으로 큰 변동성이 있는 것으로 나타났다. 즉, 토지이용과 지형이 수질에 미치는 영향이 지역에 따라 균일하지 않은(non-stationarity) 것을 보여준다. 또한 OLS와 GWR 모형의 $R^2$, AICc, Moran's I 지수를 비교하였을 때, 대부분 GWR 모형이 OLS 모형에 비하여 우수한 것으로 나타났다. 본 연구 결과는 향후 수질 및 유역 관리를 위한 토지이용 계획 수립 등의 정책적 근거로 활용될 수 있다.

Keywords

Acknowledgement

Supported by : 건국대학교

References

  1. Abbaspour, K.C., J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner and R. Srinivasan. 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology 333: 413-430. https://doi.org/10.1016/j.jhydrol.2006.09.014
  2. Ahearn, D.S., R.W. Sheibley, R.A. Dahlgren, M. Anderson, J. Johnson and K.W. Tate. 2005. Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology 313: 234-247. https://doi.org/10.1016/j.jhydrol.2005.02.038
  3. An, K.J., S.W. Lee, S.J. Hwang, S.R. Park and S.A. Hwang. 2016. Exploring the non-stationary effects of forests and developed land within watersheds on biological indicators of streams using geographically-weighted regression. Water 8: 120. https://doi.org/10.3390/w8040120
  4. Brunsdon, C., A.S. Fotheringham and M.E. Charlton. 1998. Geographically Weighted Regression - Modelling spatial nonstationarity. Journal of the Royal Statistical Society 47: 431-443. https://doi.org/10.1111/1467-9884.00145
  5. Bu, H., W. Meng, Y. Zhang and J. Wan. 2014. Relationships between land use patterns and water quality in the Taizi River basin, China. Ecological Indicators 41: 187-197. https://doi.org/10.1016/j.ecolind.2014.02.003
  6. Calder, I.R., J. Amezaga, B. Aylward, J. Bosch, L. Fuller, K. Gallop, A. Gosain, R. Hope, G. Jewitt, M. Miranda, I. Porras and V. Wilson. 2004. Forests and water - closing the gap between public and science perceptions. Water Science and Technology 49: 39-53.
  7. Chang, H. 2008. Spatial analysis of water quality trends in the Han River basin, South Korea. Water Research 42: 3285-3304. https://doi.org/10.1016/j.watres.2008.04.006
  8. Clapcott, J.E., K.J. Collier, R.G. Death, E.O. Goodwin, J.S. Harding, D. Kelly and R.G. Young. 2012. Quantifying relationships between land use gradients and structural and functional indicators of stream ecological integrity. Freshwater Biology 57: 74-90.
  9. Clement, F., J. Ruiz, M.A. Rodriguez, D. Blais and S. Campeau. 2017. Landscape diversity and forest edge density regulate stream water quality in agricultural catchments. Ecological Indicators 72: 627-639. https://doi.org/10.1016/j.ecolind.2016.09.001
  10. Fotheringham, A.S., C. Brunsdon and M.E. Charlton. 2002. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Wiley.
  11. Gyawali, S., K. Techato, C. Yuangyai and C. Musikavong. 2013. Assessment of relationship between land uses of riparian zone and water quality of river for sustainable development of river basin, A case study of U-Tapao river basin. Thailand. Environmental Sciences 17: 291-297.
  12. Hwang, S.A., S.J. Hwang, S.R. Park and S.W. Lee. 2016. Examining the relationships between watershed urban land use and stream water quality using linear and generalized additive models. Water 8: 155. https://doi.org/10.3390/w8040155
  13. Khatri, N. and S. Tyagi. 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science 8: 23-39. https://doi.org/10.1080/21553769.2014.933716
  14. Kim, H.J. and S.W. Lee. 2011. Determinants of 5 major crimes in Seoul metropolitan area: Application of Mixed GWR model. Seoul Studies 12: 137-155.
  15. Kim, J.W. and J.S. Um. 2013. Exploring NDVI gradient varying across landform and solar intensity using GWR: a case study of Mt. Geumgang in North Korea. Journal of the Korean Society for Geospatial Information System 21: 73-81. https://doi.org/10.7319/KOGSIS.2013.21.4.073
  16. Kim, K.Y. 2011. Identification of centers using GWR and spatial clustering methods: A case study on Daegu metropolitan city. Journal of the Korean Urban Geographical Society 14: 73-86.
  17. KMA (Korea Meteorological Administration). http://www.weather. go.kr/weather/climate/average_south.jsp.
  18. Lee, S.W., S.J. Hwang, S.B. Lee, H.S. Hwang and H.C. Sung. 2009. Landscape-ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape and Urban Planning 92: 80-89. https://doi.org/10.1016/j.landurbplan.2009.02.008
  19. Lee, S.W. 2013. Testing non-stationary relationship between the proportion of green areas in watersheds and water quality using geographically weighted regression model. Journal of the Korean Institute of Landscape Architecture 41: 43-51. https://doi.org/10.9715/KILA.2013.41.6.043
  20. Li, C., F. Li, Z. Wu and J. Cheng. 2017. Exploring spatially varying and scale-dependent relationships between soil contamination and landscape patterns using geographically weighted regression. Applied Geography 82: 101-114. https://doi.org/10.1016/j.apgeog.2017.03.007
  21. NIER (National Institute of Environmental Research). 2017. National Water Quality Assessment (2016). Available from http://webbook.me.go.kr/DLi-File/NIER/09/023/5642050.pdf.
  22. Paliwal, R., P. Sharma and A. Kansal. 2007. Water quality modelling of the river Yamuna (India) using QUAL2E-UNCAS. Journal of Environmental Management 83: 131-144. https://doi.org/10.1016/j.jenvman.2006.02.003
  23. Park, S.R., H.J. Lee, S.W. Lee, S.J. Hwang, M.S. Byeon, G.J. Joo, K.S. Jeong, D.S. Kong and M.C. Kim. 2011. Relationships between land use and multi-dimensional characteristics of streams and rivers at two different scales. International Journal of Limnology 47: 107-116. https://doi.org/10.1051/limn/2011023
  24. Pratt, B. and H. Chang. 2012. Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales. Journal of Hazardous Materials 209-210: 48-58. https://doi.org/10.1016/j.jhazmat.2011.12.068
  25. Richards, K., M. Sharp, N. Arnold, A. Gurnell, M. Clark, M. Tranter and W. Lawson. 1996. An integrated approach to modelling hydrology and water quality in glacierized catchments. Hydrological Processes 10: 479-508. https://doi.org/10.1002/(SICI)1099-1085(199604)10:4<479::AID-HYP406>3.0.CO;2-D
  26. Shen, Z., X. Hou, W. Li, G. Aini, L. Chen and Y. Gong. 2015. Impact of landscape pattern at multiple spatial scales on water quality: A case study in a typical urbanized watershed in China. Ecological Indicators 48: 417-427. https://doi.org/10.1016/j.ecolind.2014.08.019
  27. Singh, S. and A. Mishra. 2014. Spatiotemporal analysis of the ef fects of forest covers on stream water quality in Western Ghats of peninsular India. Journal of Hydrology 519: 214-224. https://doi.org/10.1016/j.jhydrol.2014.07.009
  28. Sliva, L. and D.D. Willams. 2001. Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Research 35: 3462-3472. https://doi.org/10.1016/S0043-1354(01)00062-8
  29. Tong, S.T.Y. and W. Chen. 2002. Modeling the relationship between land use and surface water quality. Journal of Environmental Management 66: 377-393. https://doi.org/10.1006/jema.2002.0593
  30. Tu, J. and Z.G. Xia. 2008. Examining spatially varying relationships between land use and water quality using geographically weighted regression. Science of the Total Environment 407: 358-378. https://doi.org/10.1016/j.scitotenv.2008.09.031
  31. Tu, J. 2011. Spatially varying relationships between land use and water quality across an urbanization gradient explored by geographically weighted regression. Applied Geography 31: 376-392. https://doi.org/10.1016/j.apgeog.2010.08.001
  32. Wang, Q., J. Ni and J. Tenhunen. 2005. Application of a geographically weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Global Ecology and Biogeography 14: 379-393. https://doi.org/10.1111/j.1466-822X.2005.00153.x
  33. Wang, X. 2001. Integrating water quality management and land use planning in a watershed context. Journal of Environmental Management 61: 25-36. https://doi.org/10.1006/jema.2000.0395
  34. Woli, K.R., T. Nagumo, K. Kuramochi and R. Hatano. 2004. Evaluating river water quality through land use analysis and N budget approaches in livestock farming areas. Science of Total Environment 329: 61-74. https://doi.org/10.1016/j.scitotenv.2004.03.006
  35. Xiao, J. and W. Ji. 2007. Relating landscape characteristics to non-point source pollution in mine waste-located watersheds using geospatial techniques. Journal of Environmental Management 88: 529-551.
  36. Yang, X.J. 2012. An assessment of landscape characteristics affecting estuarine nitrogen loading in an urban watershed. Journal of Environmental Management 94: 50-60. https://doi.org/10.1016/j.jenvman.2011.07.025