DOI QR코드

DOI QR Code

Effects of Growth Rate and III/V Ratio on Properties of AlN Films Grown on c-Plane Sapphire Substrates by Plasma-Assisted Molecular Beam Epitaxy

  • Lim, Se Hwan (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Shin, Eun-Jung (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Lee, Hyo Sung (Department of Materials Science and Engineering, Chungnam National University) ;
  • Han, Seok Kyu (Department of Materials Science and Engineering, Chungnam National University) ;
  • Le, Duc Duy (Department of Materials Science and Engineering, Chungnam National University) ;
  • Hong, Soon-Ku (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2019.06.10
  • Accepted : 2019.09.10
  • Published : 2019.10.27

Abstract

In this study, we investigate the effect of Al/N source ratios and growth rates on the growth and structural properties of AlN films on c-plane sapphires by plasma-assisted molecular beam epitaxy. Both growth rates and Al/N ratios affect crystal qualities of AlN films. The full width at half maximum (FWHM) values of ($10{\bar{1}}5$) X-ray rocking curves (XRCs) change from 0.22 to $0.31^{\circ}$ with changing of the Al/N ratios, but the curves of (0002) XRCs change from 0.04 to $0.45^{\circ}$ with changing of the Al/N ratios. This means that structural deformation due to dislocations is slightly affected by the Al/N ratio in the ($10{\bar{1}}5$) XRCs but affected strongly for the (0002) XRCs. From the viewpoint of growth rate, the AlN films with high growth rate (HGR) show better crystal quality than the low growth rate (LGR) films overall, as shown by the FWHM values of the (0002) and ($10{\bar{1}}5$) XRCs. Based on cross-sectional transmission electron microscope observation, the HGR sample with an Al/N ratio of 3.1 shows more edge dislocations than there are screw and mixed dislocations in the LGR sample with Al/N ratio of 3.5.

Keywords

References

  1. S. Nakamura, M. Senoh and T. Mukai, Jpn. J. Appl. Phys., 32 L8 (1993). https://doi.org/10.1143/JJAP.32.L8
  2. J. Wu, W. Walukiewicz, K. M. Yu, J.W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito and Y. Nanishi, Appl. Phys. Lett., 80, 3967 (2002). https://doi.org/10.1063/1.1482786
  3. ISO 21348 Definitions of Solar Irradiance Spectral Categories. Space Environment Technologies Home Page. Retrieved June 6, 2019 from http://www.spacewx.com/pdf/SET_21348_2004.pdf.
  4. J.-Y. Shin, S.-J. Kim, D.-K. Kim and D.-H. Kang, Appl. Environ. Microbiol., 82, 2 (2016). https://doi.org/10.1128/AEM.01186-15
  5. Y. Nagasawa and A. Hirano, Appl. Sci., 8, 1264 (2018). https://doi.org/10.3390/app8081264
  6. M. Kneissl, F. Mehnke, C. Kuhn, C. Reich, M. Guttmann, J. Enslin, T. Wernicke, A. Knauer, V. Kueller, U. Zeimer, M. Lapeyrade, J. Rass, N. Lobo-Ploch, T. Kolbe, J. Glaab, S. Einfeldt and M. Weyers, 2015 IEEE Summer Top. Meet. Ser., p.9 (2015).
  7. P. B. Perry and R. F. Rutz, Appl. Phys. Lett., 33, 319 (1978). https://doi.org/10.1063/1.90354
  8. T. Onuma, S. F. Chichibu, T. Sota, K. Asai, S. Sumiya, T. Shibata and M. Tanaka, Appl. Phys. Lett., 81, 652 (2002). https://doi.org/10.1063/1.1493666
  9. W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg and S. L. Gilbert, J. Appl. Phys., 44, 292 (1973). https://doi.org/10.1063/1.1661876
  10. L. Chen, B. J. Skromme, R. F. Dalmau, R. Schlesser, Z. Sitar, C. Chen, W. Sun, J. Yang, M. A. Khan, M. L. Nakarmi, J. Y. Lin and H.-X. Jiang, Appl. Phys. Lett., 85, 4334 (2004). https://doi.org/10.1063/1.1818733
  11. A. Khan, K. Balakrishnan and T. Katona, Nat. Photonics., 2, 77 (2008). https://doi.org/10.1038/nphoton.2007.293
  12. V. Adivarahan, A. Heidari, B. Zhang, Q. Fareed, M. Islam, S. Hwang, K. Balakrishnan and A. Khan, Appl. Phys. Express, 2, 092102 (2009). https://doi.org/10.1143/APEX.2.092102
  13. H. Hirayama, Y. Tsukada, T. Maeda, N. Kamata, Appl. Phys. Express., 3, 031002 (2010). https://doi.org/10.1143/APEX.3.031002
  14. B. P. Yonkee, E. C. Young, S. P. DenBaars, S. Nakamura and J. S. Speck, Appl. Phys. Lett., 109 , 191104 (2016). https://doi.org/10.1063/1.4967501
  15. Y. Liao, C. Thomidis, C. Kao and T. D. Moustakas, Appl. Phys. Lett., 98, 081110 (2011). https://doi.org/10.1063/1.3559842
  16. H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki and N. Kamata, Phys. Status Solidi A, 206, 1176 (2009). https://doi.org/10.1002/pssa.200880961
  17. M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson and M. Weyers, Semicond. Sci. Technol., 26, 014036 (2010). https://doi.org/10.1088/0268-1242/26/1/014036
  18. T. M. Altahtamouni, J. Y. Lin and H. X. Jiang, AIP Adv., 4, 047122 (2014). https://doi.org/10.1063/1.4871996
  19. M. A. Khan, N. Maeda, M. Jo, Y. Akamatsu, R. Tanabe, Y. Yamada and H. Hirayama, J. Mater. Chem. C., 7, 143 (2019). https://doi.org/10.1039/C8TC03825B
  20. Q. X. Guo, K. Yahata, T. Tanaka, M. Nishio and H. Ogawa, J. Cryst. Growth., 257, 123 (2003). https://doi.org/10.1016/S0022-0248(03)01565-3
  21. J. Bai, T. Wang, P. J. Parbrook, K. B. Lee and A. G. Cullis, J. Cryst. Growth., 282, 290 (2005). https://doi.org/10.1016/j.jcrysgro.2005.05.023
  22. L. Lu, B. Shen, F. J. Xu, J. Xu, B. Gao, Z. J. Yang, G. Y. Zhang, X. P. Zhang, J. Xu and D. P. Yu, J. Appl. Phys., 102, 033510 (2007). https://doi.org/10.1063/1.2768015