DOI QR코드

DOI QR Code

Fabrication of Activated Porous Carbon Using Polymer Decomposition for Electrical Double-Layer Capacitors

고분자 융해 반응을 이용한 전기 이중층 커패시터용 다공성 활성탄 제조

  • Sung, Ki-Wook (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Shin, Dong-Yo (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 성기욱 (서울과학기술대학교 신소재공학과) ;
  • 신동요 (서울과학기술대학교 의공학-바이오소재 융합 협동과정 신소재공학프로그램) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2019.09.12
  • Accepted : 2019.09.12
  • Published : 2019.10.27

Abstract

Because of their excellent stability and highly specific surface area, carbon based materials have received attention as electrode materials of electrical double-layer capacitors(EDLCs). Biomass based carbon materials have been studied for electrode materials of EDLCs; these materials have low capacitance and high-rate performance. We fabricated tofu based porous activated carbon by polymer dissolution reaction and KOH activation. The activated porous carbon(APC-15), which has an optimum condition of 15 wt%, has a high specific surface area($1,296.1m^2\;g^{-1}$), an increased average pore diameter(2.3194 nm), and a high mesopore distribution(32.4 %), as well as increased surface functional groups. In addition, APC has a high specific capacitance($195F\;g^{-1}$) at low current density of $0.1A\;g^{-1}$ and excellent specific capacitance($164F\;g^{-1}$) at high current density of $2.0A\;g^{-1}$. Due to the increased specific surface area, volume ratio of mesopores, and surface functional groups, the specific capacitance and high-rate performance increased. Consequently, the tofu based activated porous carbon can be proposed as an electrode material for high-performance EDLCs.

Keywords

References

  1. X. Dong, L. Chen, X. Su, Y. Wang and Y. Xia, Angew. Chem., 128, 7600 (2016). https://doi.org/10.1002/ange.201602766
  2. H. Yu, C. Zhu, K. Zhang, Y. Chen, C. Li, P. Gao, P. Yang and Q. Ouyang, J. Mater. Chem. A, 2, 4551 (2014). https://doi.org/10.1039/C3TA14744D
  3. H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L. L. Zhang, A. H. MacDonald and R. S. Ruoff, Nat. Commun., 5, 3317 (2014). https://doi.org/10.1038/ncomms4317
  4. H.-G. Jo, D.-Y. Shin and H.-J. Ahn, Korean J. Mater. Res., 29, 167 (2019). https://doi.org/10.3740/MRSK.2019.29.3.167
  5. L. Wei and G. Yushin, Nano Energy, 1, 552 (2012). https://doi.org/10.1016/j.nanoen.2012.05.002
  6. H.-J. Ahn, J. I. Shon, Y.-S. Kim, H.-S. Shin, W. B. Kim and T.-Y. Seong, Electrochem. Commun., 8, 513 (2006). https://doi.org/10.1016/j.elecom.2006.01.018
  7. D.-Y. Shin, K.-W. Sung and H.-J. Ahn, Appl. Surf. Sci., 478, 499 (2019). https://doi.org/10.1016/j.apsusc.2019.01.186
  8. E. Raymundo-Pinero, F. Leroux and F. Beguin, Adv. Mater., 18, 1877 (2006). https://doi.org/10.1002/adma.200501905
  9. H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T.J. Stephenson, C.K. King'ondu, C.M.B. Holt, B.C. Olsen, J.K. Tak, D. Harfield, A.O. Anyia and D. Mitlin, ACS Nano, 6, 5131 (2013).
  10. H. Sun, W. He, C. Zong and L. Lu, ACS Appl. Mater. Interfaces., 5, 2261 (2013). https://doi.org/10.1021/am400206r
  11. M. Biswal, A. Banerjee, M. Deo and S. Ogale, Energy Environ. Sci., 6, 1249 (2013). https://doi.org/10.1039/c3ee22325f
  12. C. Long, X. Chen, L. Jiang, L. Zhi and Z. Fana, Nano Energy, 12, 141 (2015). https://doi.org/10.1016/j.nanoen.2014.12.014
  13. D.-Y. Lee, G.-H. An and H.-J. Ahn, J. Alloys Compd., 52, 121 (2017).
  14. G.-H. An, D.-Y. Lee and H.-J. Ahn, J. Ind. Eng. Chem., 62, 423 (2018)
  15. G.-H. An, B-R. Koo and H.-J. Ahn, Phys. Chem. Chem. Phys., 18, 6587 (2016) https://doi.org/10.1039/C6CP00035E
  16. H. Fan, F. Ran, X. Zhang, H. Song, W. Jing, K. Shen, L. Kong and L. Kong, J. Energy Chem., 23, 684 (2014). https://doi.org/10.1016/S2095-4956(14)60200-X
  17. M. E. Achaby, Y. Essamlali, N. E. Miri, A. Snik, K. Abdelouahdi, A. Fihri, M. Zahouily and A. Solhy, J. Appl. Polym. Sci., 131, 41042 (2014).
  18. D.-Y. Sin, I.-K. Park and H.-J. Ahn, RSC Adv., 6, 58823 (2016). https://doi.org/10.1039/C6RA06782D
  19. G.-H. An and H.-J. Ahn, J. Electroanal. Chem., 744, 32 (2015). https://doi.org/10.1016/j.jelechem.2015.03.009