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Introduction 

Humans are exposed to countless, potentially pathogenic

microbes through contact, ingestion, and inhalation. Host

defenses against invading pathogens activate the immune

system, which comprises acquired and innate immunities.

If the host does not properly respond to invasion by these

pathogens, serious infectious diseases can develop.

Tuberculosis (TB), caused by Mycobacterium tuberculosis

(Mtb), has been prevalent since a long time and is one of

the most common infectious disease. In 2017, TB caused

approximately 1.3 million deaths among individuals

without HIV infection as well as 300,000 deaths among

patients with HIV infection [1, 2]. Mtb is a successful

intracellular bacterium that has co-evolved over the years

within its hosts. These features of Mtb depend on the

immediate activation of innate immunity. Recent studies

regarding genetic polymorphisms and related innate

immunity factors support the significant roles of these

factors in Mtb pathogenesis [3-5]. Host innate immune

cells, including dendritic cells (DCs), macrophages, natural

killer cells, and neutrophils, interact with various

mycobacterial components. These cells express various

pattern recognition receptors (PRRs) including C-type

lectin receptors, Toll-like receptors (TLRs), RNA helicase

retinoic acid-inducible gene I, and Nod-like receptors, all of

which play roles in uptake and recognition [6]. Mtb has

pathogen-associated molecular patterns (PAMPs) that are

identified through PRRs on innate immune cells. However,

Mtb can evade immune systems via several intricate

mechanisms. In addition, TB-related problems have been

identified a recognized in the past, but their severity has

been more recently emphasized because of emerging

antibiotic resistance in Mtb and the risk of re-infection [7].

There is an urgent need to develop effective treatments for

TB considering various aspects such as treatment duration,

potential drug toxicity, and drug–drug interactions [8]. To

devise a novel strategy against TB, it is necessary to

understand the mechanisms by which Mtb is recognized by

the host immune system. This review outlines the role of

interaction between the TLR pathway and TB pathogenesis

in innate immunity and provides an update on TLR

signaling during Mtb infection. The findings revealed that

the TLR pathway is a new immunotherapeutic target for

the development of TB treatments.
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Tuberculosis, which is caused by Mycobacterium tuberculosis (Mtb), is among the most pressing

worldwide problems. Mtb uniquely interacts with innate immune cells through various

pattern recognition receptors. These interactions initiate several inflammatory pathways that

play essential roles in controlling Mtb pathogenesis. Although the TLR signaling pathways

have essential roles in numerous host’s immune defense responses, the role of TLR signaling

in the response to Mtb infection is still unclear. This review presents discussions on host–Mtb

interactions in terms of Mtb-mediated TLR signaling. In addition, we highlight recent

discoveries pertaining to these pathways that may help in new immunotherapeutic

opportunities.
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Role of the Innate Immune System during Mtb

Infection

Mtb can escape antimicrobial immune responses [9] and

interrupt the crosstalk between acquired and innate

immunities [10]. Mtb has unique interactions with host

immune systems, especially with immediate innate

immune [11]. The primary innate immune cells

participating in Mtb infection are macrophages,

neutrophils, DCs, and natural killer cells. PRRs expressed

on innate immune cells recognize PAMPs present in Mtb

and play a critical role in the induction of innate immune

responses [12]. Furthermore, other nonimmune cell types

have also been revealed to contribute to host immune

responses during Mtb infection. Specifically, macrophages

have critical roles in mycobacterial pathogenesis because

they are the major hosts for the survival of Mtb during both

early and chronic infection [13]. Phagocytosis of Mtb is

facilitated through a number of receptors, including

complement receptors, mannose receptors, dendritic cell-

specific intracellular adhesion molecule-3–grabbing non-

integrin, surfactant protein A receptors, class A scavenger

receptors, and mannose-binding lectin [14, 15]. After

phagocytosis, host defense systems initiate various

strategies for eliminating Mtb such as activating pro-

inflammatory responses [16, 17], producing reactive

intermediates such as ROS and reactive nitrogen species

[18], and inducing cell death to inhibit the spread of Mtb

infection [19]. Conversely, Mtb also has several strategies

to disturb these defenses, such as interference with

phagosomal maturation and acidification, resistance to

oxidative stresses, escape to the cytosol, formation of

granulomas, and modulation of host cell death [9, 20]. Mtb

can inhibit host innate immune systems by producing

cellular envelope glycolipids and tetra-acylated sulfolipids,

which are antagonists of TLR2, thereby inhibiting its role in

pathogen recognition [21]. 

 

TLR Biology 

Human Toll is homologous to Drosophila Toll, which

exists in 10 types (TLR1–TLR10), whereas in mice, it

consists of 12 types (TLR1–TLR9 and TLR11–TLR13).

Similar to Drosophila Toll, human Toll is also a type I

transmembrane protein containing an extracellular domain

comprising a leucine-rich repeat domain and a cytoplasmic

domain termed the Toll/IL-1R (TIR) domain that exhibits

high similarity to the IL-1R family. The extracellular

leucine-rich repeat domain is responsible for recognizing

and binding PAMPs, which are conserved molecules that

are essential for pathogen survival. Dimerization of TLRs

results from ligand binding, which triggers the recruitment

of adaptor proteins to the intracellular TIR domain.

Vertebrate TLRs are classified using sequence homology

into six families, namely TLR1 (1, 2, 6, 10), TLR3, TLR4,

TLR5, TLR7 (7, 8, 9), and TLR11 (11, 12, 13). Cell surface

TLRs include TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10,

whereas intracellular TLRs include TLR3, TLR7, TLR8,

TLR9, TLR11, TLR12, and TLR13 in endosomes and

lysosomes. The cell surface TLRs mainly recognize

microbial membrane components, whereas the other TLRs,

located on intracellular vesicles, recognize microbial

nucleic acids [12, 22, 23].

Upon the recognition of a ligand, the cytoplasmic TIR

domain of TLRs interacts with several signaling adaptors

such as myeloid differentiation primary response protein

88 (MyD88), TIR domain-containing adaptor inducing IFN-

β (TRIF), TIRAP/MAL, and TRAM [24]. Various kinases

(Interleukin-1 receptor-associated kinase (IRAK)4, IRAK1,

IRAK2, TBK1, and inhibitor of NF-κB kinase ε) and

ubiquitin ligases (TNF receptor associated factor (TRAF) 6

and Pellino 1) are recruited and activated. The recognition

of PAMPs by TLRs occurs via two signaling pathways:

MyD88-dependent and TRIF-dependent pathways. The

adaptor protein MyD88 serves as an essential “hub” in TLR

signaling, and it associates with most TLRs. Activation of

MyD88-dependent pathways triggers the phosphorylation

of transforming growth factor (TGF)-β-activated kinase-1,

which then activates three distinct pathways involving the

inhibitor of NF-κB kinase complex and MAPKs: ERK, JNK,

and p38 pathways. Consequently, this activation mediates

translocation of the transcription factors activator protein 1

and NF-κB, which then induce the expression of

inflammatory cytokines [25, 26]. The TRIF-dependent

pathway is specific to only a few TLRs such as TLR3 and

TLR4. TRIF interacts with TRAF6 and TRAF3. The TRAF6

downstream pathway activates the transforming growth

factor-β-activated kinase (TAK) 1 complex, which induces

the activation of NF-κB and MAPKs. In the case of TRAF3,

this pathway induces interferon-regulatory factor 3

phosphorylation, and then phosphorylated interferon-

regulatory factor 3 forms a dimer that serves as a

transcription factor in the nucleus, in which it induces the

expression of type I IFN genes [27]. When these pathways

are excessively activated and respond to immune stimuli in

a dysregulated manner, the host experiences a severe

inflammatory condition [28] (Fig. 1).
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Interaction between the TLR Pathway and

Mycobacteria

Several studies suggested that TLRs are essential factors

for Mtb infection. Despite a number of studies revealing a

critical role of TLR signaling in mycobacterium detection in

vitro, the in vivo significance of TLRs remains unclear [14,

29]. In particular, TLR1, TLR2, TLR6, TLR9, and possibly

TLR4 are the key receptors involved in the recognition of

mycobacterial infection. In this part, we introduce studies

discussing the role of the TLR pathway against

mycobacterial infection (Table 1).

TLR2

TLR2, forming heterodimers with TLR1 or TLR6, is a

Fig. 1. A scheme of TLR signaling pathways related to mycobacterial recognition. 

TLRs are involved in the innate immune response to various mycobacterial ligands (Shown in box). TLR2 and TLR1 or TLR2 and 6 and TLR5 co-

localize at the cell surface, at which they sense their respective ligands, whereas TLR3, TLR7, TLR8, and TLR9 are located in endosomes, in which

they recognize microbial or host-derived nucleic acids. Only TLR4 is expressed on both the cell surface and in endosomes (not shown in the

figure). Stimulation of TLR1/2 by mycobacterial ligands leads to the engagement of Toll/IL-1R (TIR) domain-containing adaptor proteins (either

myeloid differentiation primary-response protein 88 [MyD88] or TIR domain-containing adaptor protein inducing IFNβ [TRIF] and TRIF-related

adaptor molecular [TRAM]). Engagement of the adaptor molecules activates downstream signaling pathways that involve associations between

IL-1R-associated kinases (IRAKs) and the adaptor molecules TNF receptor-associated factors (TRAFs), followed by activation of MAPKs, which in

turn activate transcription factors. These major transcription factors are NF-κB (RelA/p50), activator protein 1 (AP1), and interferon-regulatory

factors (IRFs). A major result of the activation of extracellular TLRs is the induction of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β.

However, a major consequence is the induction of IRFs, leading to the production of type I IFNα and IFNβ. LAM, Lipoarabinomannan; LM,

Lipomannan; PIM, Phosphatidylinositol mannoside; TAK1, TGFβ-activated kinase 1; IKK, Inhibitor of NF-κB kinase; IκB, inhibitor of NF-κB.
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well-known receptor that is involved in recognition and

response by innate immune cells including macrophages

and DCs. In particular, TLR2 is the central receptor

involved in the recognition of mycobacteria. Stimulation of

TLR2 by mycobacterial ligands is important for inducing

the intracellular signaling that activates the NF-κB and

MAPK pathways. These pathways trigger the production

of pro-inflammatory cytokines and chemokines and induce

phagocytosis, the killing of Mtb, and antigen presentation.

TLR2 mainly recognizes a variety of mycobacterial cell wall

antigens such as lipoarabinomannan, lipomannan (LM),

38- and 19-kDa mycobacterial lipoprotein,

phosphatidylinositol mannoside, and triacylated (TLR2/

TLR1) or diacylated (TLR2/TLR6) lipoproteins [30-34]. In

a previous study, TLR2 was demonstrated to be essential

for the expression of pro-inflammatory cytokines, as

inhibition of TLR2 expression in Raw 264.7 macrophages

inhibited TNF-α expression in response to Mtb infection

[35]. In addition, an important role for TLR2 and TLR6 was

found in the production of IL-1β through the MyD88

pathway during Mtb infection [36]. IL-12 release in

macrophages and DCs is also dependent on TLR2 in

response to Mtb infection [37]. ROS generation is also

induced by TLR2, and it is important for the MAPK

pathway-dependent expression of CXCL8 and CCL2 in

human primary monocytes [38]. In human DCs, TLR2 also

induces ROS production to stimulate DC maturation and

lymphocyte proliferation in response to Mtb [39]. The role

of TLR2 was also indicated through an in vivo study in

which TLR2 KO mice, but not TLR6 KO mice, exhibited

reduced Mtb clearance and granuloma formation in the

lungs and enhanced susceptibility to Mtb infection. TLR2-

deficient mice also display decreased pro-inflammatory

cytokine production [40-42]. In TLR2 KO mice, Mtb

increases the bacterial burden and disturbs the control of

neutrophilic inflammation. TLR2 downregulates CXCL5

production to prevent neutrophil-mediated pathology

during Mtb infection [43]. In addition, TLR2 cooperates

with other TLR family including TLR4 [44] and TLR9

during Mtb infection. Despite published supports, several

murine studies revealed that TLR2 is not essential for host

protection against acute Mtb infection [41, 42, 45]. 

TLR3

The role of TLR3, a sensor of extracellular viral or host

RNA derived from infected or damaged cells, in TB

pathogenesis has not been elucidated. A recent study

revealed that mycobacterial RNA-induced IL-10

production is regulated by TLR3 through PI3K/AKT.

Upon Mycobacterium bovis bacillus Calmette-Guérin (BCG)

infection, TLR3−/− mice exhibited reduced IL-10 production

but elevated IL-12 production compared with the findings

in controls as well as inhibited AKT phosphorylation. In

addition, BCG-infected TLR3−/− mice exhibited reduced

pulmonary bacterial burden and tissue damage [46].

However, the evidence supporting the link between TLR3

and TB outcome remains controversial. TLR3 pathway

stimulation using agonist poly (I:C) led to increased

bacterial load and mycobacterial growth. Intranasal poly

(I:C) treatment aggravates lung pathology and increases

bacterial growth in H37Rv-infected mice through type I

IFN [47, 48]. Nevertheless, poly (I:C) is being studied as a

candidate for a vaccine against TB. TLR3 stimulation

Table 1. The roles of TLRs in mycobacterial infection.

TLR Function Bacteria Ref.

TLR2 Induction of pro-inflammatory cytokines Mtb [35-37]

Induction of ROS generation, chemokine production, and MAPK activation Mtb [38, 39]

Reduction of bacterial burden Mtb [40-42]

Reduction of neutrophil-derived inflammation by regulating CXCL5 production Mtb [43]

TLR3 Induction of IL-10 via the PI3K/AKT signaling pathway BCG [46]

Progression of infection through activation of TLR3 pathway using poly (I:C) Mtb [47, 48]

TLR4 Induction of phagocytosis Mtb [53]

Induction of pro-inflammatory cytokine Mtb, BCG [54, 55, 61]

Control of the balance cell death Mtb [63]

TLR7 Induction of killing bacteria through autophagy Mtb [64]

TLR9 Induction of pro-inflammatory cytokines Mtb [37]

Induction of Th1 response and Th1-associated cytokine IFN-γ Mtb [72]
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through poly (I:C)-encapsulating nanoparticles enhances

the pro-inflammatory immune response to BCG-infected

macrophages in a synergistic manner [49]. A novel

liposome adjuvant, dimethyl dioctadecyl ammonium

bromide combined with poly (I:C) and cholesterol (DPC),

can play a role in Mtb subunit vaccine development. In this

case, poly (I:C) could attenuate disease severity following

Mtb infection in mice [50]. 

TLR4

TLR4 is well known for recognizing endotoxins

produced by gram-negative bacteria such as LPS [51].

Although some earlier studies focused on the TLR2

pathway, recent investigations uncovered evidence of the

critical role of the TLR4 pathway in mycobacterial infection

[52]. The TLR4 signaling pathway plays various essential

roles in Mtb infection. LPS, a TLR4 ligand, upregulates

TLR4/NADPH oxidase complex 2 expression and

increases ROS levels. Blockade of TLR4 using anti-TLR4

receptor antibody and the endotoxin antagonist E5531

inhibits the killing of Mtb by macrophages and TLR4-

dependent Mtb-induced pro-inflammatory responses [53,

54]. TLR4 recognizes cell wall lipids, glycoproteins, and

antigens in Mtb. Acylated forms of M. bovis BCG LM

modulate inflammatory activities via the TLR4 signaling

pathway in macrophages [55]. Upregulation of TLR4 in

response to Mtb infection has also been noted, with the

surface of expression of both TLR4 and TLR2 on

lymphocytes in patients with TB being significantly higher

than that in healthy control individuals [56, 57]. These

results confirmed that the expression of TLR4 on CD14+

monocytes, but not TLR2, is upregulated in individuals

who received BCG vaccines compared with the findings in

unvaccinated individuals [58]. In the case of neutrophils,

Mtb stimulation also induces the expression of TLR4, TNF-

α, and scavenger receptors [59, 60]. Another study

demonstrated that TLR4 expression is required to protect

mice against chronic Mtb infection. TLR4-mutant C3H/HeJ

mice have higher susceptibility to H37Rv infection than

wild-type mice. TLR4-mutant mice cannot induce

inflammatory responses properly upon exposure to

endotoxins or Mtb [57, 61], but other results found no

significant difference in susceptibility between wild-type

and TLR4-mutant mice [43, 62]. TLR4-dependent signals

play an essential role in the maintenance of the balance

between apoptotic and necrotic cell death upon H37Rv

infection [63]. Despite accumulating evidence from the

aforementioned studies, several investigations have

questioned the importance of TLR4 in mycobacterial

infection in vivo [41, 62]. Further studies are necessary to

identify the role of TLR4 in mycobacterial infection.

TLR7 and TLR8

TLR7 and TLR8 mainly recognize ssRNA. In many

studies, they were found to be related to intracellular

infection such as viral infection. The ligands of TLR7 and

TLR8 in Mtb are unclear. However, some studies found

that TLR7 is also involved in Mtb infection. In

macrophages, TLR7 expression is upregulated by Mtb.

TLR7 is important for cell viability and the induction of

autophagy [64]. In addition, TLR8 expression is increased

in THP-1 macrophages after BCG infection [65]. In a

clinical study, TLR7 and TLR8 genetic polymorphisms

were linked to increased susceptibility to Mtb infection

with high phagocytosis [65, 66]. TLR8 agonists play roles in

protecting against Mtb challenge in TLR8 transgenic mice.

Regarding immunization, ESAT-6 antigen has a better

effect in combination with a TLR8 agonist [67].

TLR9

TLR9 recognizes bacterial DNA [68, 69], possibly

including Mtb DNA, activates macrophages to induce pro-

inflammatory responses [70], and induces T-cell

differentiation [71]. TLR9 has a protective role against Mtb

infection in combination with TLR2. TLR2/TLR9−/− mice

displayed markedly high susceptibility to Mtb infection in

associated with defective IL-12 p40 and IFNγ production,

but in the presence of TLR2, TLR9−/− mice exhibited only

minor reductions in resistance compared with the findings

in double gene-deficient mice [72]. Several recent

investigations demonstrated that TLR9 is associated with

Mtb infection. One study identified the

immunomodulatory mechanism of vitamin D using

heliotherapy in TB via the upregulation of TLR9 [73].

Accumulating genetic evidence indicates that particular

TLR9 polymorphisms might portend a higher risk for TB

[74-76].

Diverse Functions of TLRs in Response to Mtb

Antigens

Antigens from pathogens are of considerable interest for

use in vaccine development and the diagnosis of infectious

diseases including TB [77]. In particular, Mtb has a variety

of antigens because it has unique cell walls and it secretes
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Table 2. Mycobacterial antigens that regulate TLRs signaling pathway.

TLR Antigen Characteristic Function Cell Type Ref.

TLR2 Rv1737c DosR Induction of TLR2 expression and macrophages 

activation

Macrophage [122]

LpqT Lipoproteins Suppression of activation of MAPK pathway, 

MHC II antigen processing.

Induction of apoptosis

Macrophage [84, 85]

LprG Lipoproteins Suppression of MHC II antigen processing,

Induction of pro-inflammatory cytokines

Macrophage [85, 86]

LprA Lipoproteins Suppression of MHC II antigen processing,

Induction of pro-inflammatory cytokines

Macrophage [87]

19-kDa Antigens 

(LpqH)

Lipoproteins Suppression of MHC II antigen processing

Induction of pro-inflammatory cytokines, activation of 

MAPK pathway, apoptosis

Macrophage [91, 92]

MPT83 Secreted 

lipoproteins

Induction of activation of MAPK and NF-κB pathway, 

pro-inflammatory cytokines, apoptosis.

Enhancement of APC function

Macrophage [93, 94]

Lipomannan Cell wall 

component

Induction of activation of MAPK and NF-κB pathway, 

pro-inflammatory cytokines, granuloma macrophage 

fusion

Macrophage [95-97]

Lipoarabinomannan Cell wall 

component

Induction of activation of MAPK and NF-κB pathway, 

pro-inflammatory cytokines, granuloma macrophage 

fusion

Macrophage [98]

PE_PGRS11 PE family 

protein

Induction of activation of MAPK and NF-κB pathway.

Suppression of ROS generation

Endothelial 

cell

[100]

PE_PGRS33 PE family 

protein

Induction of activation of MAPK and NF-κB pathway, 

apoptosis

Macrophage [101, 102]

PE_PGRS62 PE family 

protein

Induction of activation of MAPK and NF-κB pathway

Suppression of pro-inflammatory cytokines

Dendritic 

Cell, 

Macrophage

[103, 104]

PPE17 PPE family 

protein

Induction of activation of MAPK and NF-κB pathway, 

pro-inflammatory cytokines

Macrophage [105]

PPE18 PPE family 

protein

Induction of activation of MAPK and NF-κB pathway, 

anti-inflammatory cytokines.

Suppresion of pro-inflammatory cytokines

Macrophage [106, 107]

PPE26 PPE family 

protein

Induction of activation of MAPK and NF-κB pathway, 

pro-inflammatory cytokines, cell surface markers, 

T cell immunity

Macrophage [109]

PPE32 PPE family 

protein

Induction of activation of MAPK and NF-κB pathway, 

pro- and anti-inflammatory cytokines,

Macrophage [110]

PPE60 PPE family 

protein

Induction of activation of MAPK and NF-κB pathway, 

pro-inflammatory cytokines, Th1/Th17 immunity

Dendritic Cell [111]

PPE68 PPE family 

protein

Induction of activation of MAPK, anti-inflammatory 

cytokines. Suppression of pro-inflammatory cytokines

Macrophage [108]

Hsp60 Heat shock 

protein

Induction of activation of MAPK, anti-inflammatory 

cytokines. Suppression of pro-inflammatory cytokines

Macrophage

T cell

[112, 113]

ChoD Cholesterol 

oxidase

Induction of activation of MAPK, anti-inflammatory 

cytokines, ROS generation

Macrophage [115]

Rv0577 Potential 

glyoxylase

Induction of activation of MAPK, pro-inflammatory 

cytokines, DC maturation, Th1 immunity

Dendritic Cell [116]
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Table 2. Continued.

TLR Antigen Characteristic Function Cell Type Ref.

TLR2 Hip1 Serine hydrolase Suppression of pro-inflammatory cytokines, DC maturation 

and Th1/Th17 immunity

Dendritic Cell

Macrophage

[117, 118]

Rv3529c Sulfotransferase Suppression of MAPK, NF-κB pathway pro-inflammatory 

cytokines, ROS generation, phagosome-lysosome fusion

Macrophage [119]

Rv0774c Extracellular esterase Suppression of MAPK, pro- and anti-inflammatory 

cytokines, NO production

Macrophage [120]

Lrp Leucine-responsive 

regulatory protein

Suppression of NF-κB pathway, 

pro-inflammatory cytokines, APC function

Macrophage [121]

Rv3131 FMN binding 

nitroreductase domain-

containing protein

Induction of activation of NF-κB pathway, 

pro-inflammatory cytokines

Macrophage [123]

Rv2660c Hypothetical protein Induction of activation of pro-inflammatory cytokines

Increasing the intracellular survival of bacteria

Macrophage [124]

Rv3628 Soluble inorganic 

pyrophosphatase

Induction of activation of MAPK and NF-κB pathway, 

pro-inflammatory cytokines, Th1 immunity

Dendritic Cell [125]

DATIN Dormancy Associated 

Translation Inhibitor

Induction of activation of pro-inflammatory cytokines Macrophage [126]

MymA 55-kDa Mtb flavin-

containing 

monooxygenase

Induction of activation of NF-κB pathway, 

pro-inflammatory cytokines, Th1 immunity

Macrophage [127]

TLR4 Rv2882c Secreted culture filtrate Induction of activation of MAPK and NF-κB pathway, 

Induction of expansion of the T-cell,

Improvement of protective efficacy with BCG

Macrophage [132]

Rv0652 Secreted culture filtrate Induction of activation of MAPK pathway and the 

expression of surface molecules on cell, DC maturation, and 

proinflammatory cytokine production,

Enhancement of the polarization of T effector cells to Th1 

immunity

Macrophage,

Dendritic cell

[133, 134]

GrpE Heat shock protein Induction of activation of MAPK and NF-κB pathway,

Induction of T cell proliferation

Dendritic Cell [138]

RpfB 

(Rv1009)

Resuscitation-

promoting factor

Induction of activation of MAPK and NF-κB pathway,

Induction of T cell proliferation

Dendritic Cell [139]

Rv3841 Secreted culture filtrate Induction of activation of MAPK and NF-κB pathway,

Induction of T cell proliferation

Dendritic Cell [140]

HSP65 Heat shock protein Induction of activation of NF-κB pathway Endothelial 

cell

[137]

TLR2/4 ESAT-6 Secreted culture filtrate Induction of activation of MAPK, pro-inflammatory 

cytokines, type I IFN, T cell immunity

Macrophage [141-143]

38-kDa 

Antigens 

(PstS-1)

Secreted culture filtrate Induction of activation of MAPK pathway, ER stress Monocyte [44, 144]

HSP70 Heat shock protein Induction of activation of NF-κB pathway Endothelial 

cell

[137]

Rv3463 Secreted culture filtrate Induction of expression of surface molecules and 

pro-inflammatory cytokines,

Induction of bactericidal effects via phagosome maturation

Macrophages [145]
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antigens following infection. Mtb antigen discovery efforts

have continued for several decades, and several studies

already revealed their immunogenicity for improving the

design of TB vaccines [78]. Although these studies mainly

focused on T-cell immune responses [79-82], the

correlation between Mtb antigens and TLR has recently

been actively studied (Table 2). Mtb antigens mainly

interact with TLR2 and TLR4, with TLR2 having a

dominant role.

 

TLR2-Associated Mtb Antigens 

TLR2 is an important receptor for recognizing Mtb.

Several Mtb antigens interact with TLR2. They include both

cell wall components of Mtb such as lipoprotein, LM, and

38- or 19-kDa antigens and specific proteins or enzymes

found only in Mtb.

TLR2-Associated Mtb Lipoprotein Antigens 

LpqT is a ligand of TLR2 that suppresses MAPK and NF-

κB signaling. The ligand can boost mycobacterial survival

by inhibiting TLR2-dependent effects on inflammatory

cytokine expression and cell apoptosis in macrophages.

This lipoprotein is also involved in inhibiting major

histocompatibility complex II (MHC II) antigen processing

in CD4+ T cells to evade immune surveillance [83, 84].

LprG and LprA are also agonists that bind directly to

TLR2. In macrophages, these antigens induce

inflammatory cytokine expression and negatively control

MHC II antigen processing to modulate inflammation [85-

87].

LpqH, a 19-kDa lipoprotein, also triggers TLR2

activation, leading to upregulation of the expression of

death receptors and ligands that induce apoptosis. LpqH is

also associated with the induction of autophagy-dependent

TLR2/TLR1/CD14 and vitamin D3 signaling for anti-

mycobacterial activity. LpqH participates in the

manipulation of adaptive immunity by inducing cytokine

secretion and directly regulating the activation of memory

in CD4+ T cells [88-90]. In addition, 19-kDa lipoproteins

are also well-known TLR2 ligands. These antigens induce

apoptosis via the TLR2 pathway in macrophages. In

addition, TLR2-mediated PPARγ expression is induced by

19-kDa lipoproteins, thereby promoting inflammatory

responses by activating the MAPK pathway [91, 92].

Additionally, 19-kDa lipoproteins are involved in IFN-γ

signaling. IFN-γ signaling is associated with the expression

of class II transactivator, which regulates chromatin

remodeling. 19-kDa lipoproteins inhibit IFN-γ signaling

and class II transactivator expression through the TLR2

pathway.

The secreted mycobacterial protein MPT83 is involved in

immune responses via the TLR2 pathway. This protein

induces pro-inflammatory cytokine production and

apoptosis by activating the MAPK and NF-κB pathways.

However, MHC II antigen processing is inhibited by

MPT83 [93, 94]. Both of these components are recognized

by TLR2, and they activate the immune responses of innate

immune cells.

TLR2-Associated Mtb Lipomannan Antigens 

LM has been reported to induce the expression and

secretion of matrix metalloproteinase 9 in macrophages

through a TLR1/TLR2- and CD14-mediated pathway [95,

96]. Furthermore, LM is associated with granuloma–

macrophage fusion via a TLR2-dependent pathway that is

mediated by β1 integrin/ADAM9[97]. Lipoarabinomannan

also interacts with TLR1 and TLR2 signaling pathways and

induces signals that activate inflammation [98]. 

The proline-glutamic acid (PE) and proline-proline-

glutamic acid (PPE) gene family members are only found

in Mtb. Many studies indicated that PE or PPE proteins are

related to various immune responses.

PE family proteins feature a particular PE region. Some

PE family protein has multiple copies of polymorphic

guanine-cytosine-rich sequences (PGRSs), and they are

referred to as PE_PGRS family proteins. Many PE_PGRS

proteins are related to the cell wall, and they can be

recognized by TLR2. In addition, PE_PGRS proteins can

induce the maturation and activation of immune cells by

upregulating MAPK and NF-κB signaling [99]. PE_PGRS11

plays a role in regulating resistance to oxidative stress.

PE_PGRS11 downregulates H2O2-mediated p38 MAPK

signaling and increases the survival of bacteria [100].

PE_PGRS33, a surface-exposed protein, interacts with

TLR2 and induces the release of TNF-α by activating

MAPK signaling in macrophages. This causes the release of

cytochrome c, leading to the activation of apoptosis [101,

102]. PE_PGRS62 binds to TLR2 and attenuates the

expression of IL-1β, IL-6, and iNOS in macrophages [103,

104].

PPE family proteins have common regions that include a

PPE motif near the N-terminal region. PPE17 interacts with

TLR2 and activates NF-κB signaling. In a clinical study, an

Mtb-infected patient was easily infected by HIV-1 because

PPE17 augments transcription, leading to HIV-1 LTR

transactivation [105]. PPE18 and PPE68 can induce the

activation of MAPK via TLR2, and they are important for
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the induction of IL-10 expression in macrophages.

Interestingly, recombinant PPE18 proteins can attenuate

inflammation and enhance survival in sepsis [106-108].

PPE26 and PPE32 trigger inflammatory responses, leading

to activation of the MAPK and NF-κB pathways.

Meanwhile, PPE26 CD4+ and Th1-type T cells are polarized

by the immune response [109, 110]. PPE60 drives Th1/

Th17 responses through the TLR2-mediated maturation of

DCs by activating MAPK and NF-κB pathways [111].

Heat shock proteins (HSPs), which are molecular

chaperones, are also recognized by TLR2. Hsp60 is a ligand

of TLR2, and it upregulates IL-10 production to modulate

the immune response. Additionally, HSP60 controls T-cell

responses by regulating the surface expression of TLR2

[112, 113].

TLR2-Associated Mtb Proteins or Enzymes Antigens 

Other enzymes or factors in Mtb can act as TLR2 ligands.

The 30-kDa antigen of Mtb is known as a good inducer of

immune responses. It generates ROS production via TLR2.

In addition, the 30-kDa antigen upregulates the expression

of CXCL8 and CCL2 [114]. ChoD, a cholesterol oxidase,

also binds TLR2 and participates in immune responses.

ChoD activates the MAPK pathway and stimulates the

production of IL-10 [115]. Rv0577 can drive DC maturation

and pro-inflammatory cytokine expression by activating

MAPK and NF-κB pathways in a TLR2-dependent manner.

In addition, Rv0577 has an important role in CD4+ and

CD8+ T-cell polarization [116]. Hip1, a serine hydrolase,

attenuates pro-inflammatory responses by inhibiting TLR2

activation. This antigen interferes with DC maturation,

cytokine secretion, and antigen presentation [117, 118].

Rv3529c and Rv0774c negatively regulate TLR2-mediated

pro-inflammatory responses. They suppress the

production of pro-inflammatory cytokines and enhance the

production of anti-inflammatory cytokines [119, 120]. 

Leucine-responsive regulatory protein also inhibits pro-

inflammatory responses by disrupting NF-κB signaling.

Leucine-responsive regulatory protein activates the PI3K/

Akt pathway, which has an inhibitory effect on TLR2 [121].

Rv1737c, one of the dormancy survival regulator antigens,

is mainly expressed in the latent phase of Mtb infection.

Rv1737c upregulates TLR2 expression and induces NF-κB

activation on macrophages in a non-TLR4–dependent

manner [122]. Rv3131, an uncharacterized member of the

dormancy survival regulator regulon, encodes an FMN-

binding nitroreductase domain-containing protein, and it

induces pro-inflammatory cytokines through the TLR2

signaling pathway. Rv3131 interacts with TLR2 and

contributes to the phosphorylation of NF-κB [123]. Rv2660c

and Rv3628 augment the expression of pro-inflammatory

cytokines by interacting with TLR2. They enhance pro-

inflammatory cytokines expression, leading to the

activation of MAPK and NF-κB signaling. Rv3628 also

polarizes DCs and CD4+ T cells [124, 125]. 

Dormancy-associated translation inhibitor also interacts

with TLR2 and elevates the levels of pro-inflammatory

cytokines [126]. MymA, a cell wall-associated protein, also

increases pro-inflammatory cytokine expression, leading to

the activation of MAPK and NF-κB pathways, which are

dependent on TLR2 signaling [127]. 

Mtb also releases membrane vesicles (MVs) into the

environment. MVs carry virulence factors of Mtb such as

phospholipids, proteins, and cell wall components.

Lipoproteins are also delivered to the cell by MVs. Carried

lipoproteins stimulate the TLR2 signaling pathway and

then trigger an inflammatory response [128]. Another

study uncovered that exosomes from Mtb-infected cells can

inhibit IFN-γ signaling after Mtb infection. These exosomes

contain Mtb virulence factors that are delivered to

macrophages [129, 130]. The virulence factors of Mtb may

modulate the immune system [114, 131]. 

TLR4 Signaling Pathway-Associated Antigens

Several studies demonstrated that Mtb-derived antigens

regulate the TLR4 signaling pathway, including HSPs and

culture filtrate proteins, suggesting their potential use in

the development of novel vaccines [33]. Rv2882c, an Mtb

culture filtrate, induces the activation of macrophages to

express pro-inflammatory cytokines, co-stimulatory, and

MHC via the TLR4 pathway [132]. Rv0652, another culture-

filtrated antigen derived from Mtb, also activates

macrophages through the TLR4 pathway and then induces

pro-inflammatory responses such as the production of

TNF-α and monocyte chemoattractant protein-1 [133]. In

addition, Rv0652 is recognized via the TLR4 receptor,

thereby inducing DC maturation and the production of

pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-

6, through MyD88- and TRIF-dependent signaling

pathways [134]. 

Mycobacterial HSPs have been revealed to exert several

immunologic effects following Mtb infection [135, 136].

Mtb HSP65 and HSP70 induce the activation of NF-κB

signaling and the expression of TLR4, but not functional

TLR2, in human endothelial cells. In particular, HSP65 was

demonstrated to signal exclusively through TLR4 [137].

Mtb GrpE, a cofactor of HSP70, induces the activation and
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maturation of DCs upon binding to TLR4 and promotes

Th1-biased T-cell immune responses, as DCs from TLR4−/−

mice exhibited no response to Mtb GrpE [138]. Similarly,

RpfB is another Mtb antigen that binds to TLR4, followed

by MyD88/TRIF-dependent signaling and subsequent

MAPK and NF-κB activation in DCs [139]. Activation of

DCs by Rv3841 (also known as Mtb ferritin B) is mediated

by TLR4, followed by the induction of MAPK and NF-κB

signaling pathways and Th1 immune responses [140]. 

TLR2 and TLR4 Signaling-Associated Mtb Antigens

Several studies identified Mtb antigens that require both

the TLR2 and TLR4 pathways to modulate immune

responses. ESAT-6, a 6-kDa secreted antigen, can bind to

both TLR2 and TLR4. This antigen induces apoptosis by

elevating cleaved caspase-9 and caspase-3 expression. ROS

generation and MAPK phosphorylation also contribute to

the induction of apoptosis. In addition, ESAT-6 stimulates

the expression of type 1 IFN. IFN-β is upregulated by

ESAT-6 in a TLR2 and TLR4 pathway-dependent manner.

By contrast, ESAT-6 inhibits T-cell immune responses by

suppressing antigen-presenting cell function [141-143]. 

The 38-kDa antigen (e.g., PstS-1) from culture filtrates of

Mtb H37Rv activates MAPK signaling in human

monocytes via TLR2 and TLR4. PstS-1 also plays important

roles in the induction of endoplasmic reticulum stress-

mediated apoptosis via TLR2 and TLR4. MCP-1, a pro-

inflammatory cytokine, is upregulated by 38-kDa antigen,

and ROS and endoplasmic reticulum stress levels are

consequently elevated [44, 144].

 Recombinant Rv3463 induces the expression of surface

molecules and pro-inflammatory cytokine production

through TLR2 and TLR4 pathways in macrophages. It

induces MAPK, PI3K, and NF-κB signaling in

macrophages. Also, Rv3463 sustains the active state of Mtb-

infected cells and inhibits bacterial growth by enhancing

phagosomal fusion [145].

Conclusions and Perspectives 

TB remains a severe infectious disorder that can lead to

death. The innate immune system, which plays a crucial

role in the establishment of appropriate host defense

mechanisms, is involved in the early phases of Mtb

infection [146]. In this review, we comprehensively

summarized recent findings about innate immune

recognition by mycobacteria, particularly focusing on

TLRs. Several investigations about the Mtb-host

relationship have been conducted, but the involvement of

various Mtb-derived PAMPs in TB-mediated immunity

remains unclear. Based on several preceding investigations

[147-149], we suggest that countless Mtb antigens can be

potential modulators that can regulate the host immune

responses including those of TLRs to regulate uncontrolled

inflammatory responses. In particular, Mtb-secreted

culture filtrate antigens exhibit serologic reactivity. The

ability to activate inflammatory signaling cascades through

the TLR pathway means that the modulation of TLR

signaling could be targeted as a new treatment strategy

against TB[150]. Several factors from Mtb can regulate host

innate immunity by dictating a sophisticated system that

relates multiple host signaling pathways such as the TLR

pathway. However, activating the immune system may

induce adverse events in the host, such as the development

of autoimmune diseases and breakdown of host immune

homeostasis. It is critical to further identify the

mechanisms associated with TLR signaling in TB

pathogenesis and use these results to overcome the

expected effects on TLR signaling to develop promising

immunotherapies for TB.
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