DOI QR코드

DOI QR Code

A Study on the Radius of Curvature of Concave Optical Fiber Tips fabricated by Laser-Induced Photothermal Effect

레이저 유도 광열 효과를 이용하여 제작된 오목한 광섬유 팁의 곡률 반경에 관한 연구

  • 최지원 (한국과학기술원 전기및전자공학부) ;
  • 손경호 (한국과학기술원 전기및전자공학부) ;
  • 유경식 (한국과학기술원 전기및전자공학부)
  • Received : 2019.08.08
  • Accepted : 2019.10.15
  • Published : 2019.10.31

Abstract

We fabricated concave optical fiber tips using hydrofluoric acid solution and photothermal effect induced by $1.55{\mu}m$ wavelength laser applied to an optical fiber. The radius of curvature of the concave optical fiber tips fabricated with different applied laser power, etching time, and concentration of hydrofluoric acid was measured with an optical microscope. Then, we analyzed how the radius of curvature changes for those three variables. In addition, the reliability of the measurement method using a microscope was verified through a free spectral range(FSR) and a scanning electron microscope(SEM). Through this paper, the radius of curvature can be adjusted by the variables of the fabrication process of concave optical fiber tips; thus, it is overcoming the limitations of conventional optical fiber etching methods using hydrofluoric acid solutions.

본 논문에서는 플루오린화 수소산(Hydrofluoric acid: HF) 수용액과 광섬유에 인가된 $1.55{\mu}m$ 파장의 레이저를 통해 유도된 광열 효과를 이용하여 오목한 광섬유 팁을 제작하였다. 제작 과정에서 인가한 레이저의 세기, 식각 시간, HF 수용액의 농도에 따른 광섬유 팁 오목 면의 곡률 반경을 광학 현미경을 이용하여 측정하였으며 곡률 반경이 세 변인에 대하여 어떻게 변화하는지 분석하였다. 또한, Free Spectral Range(FSR)와 Scanning electron microscope(SEM) 촬영을 통해 현미경을 이용한 측정 방법의 신뢰성을 검증하였다. 본 논문을 통해 광섬유 팁의 오목 면 제작 과정에서 변인에 따라 곡률 반경을 조절할 수 있게 됨으로써 기존의 HF 수용액을 이용한 광섬유 식각 방법의 한계점을 극복할 수 있었다.

Keywords

References

  1. A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, "Highly selective and widely tunable 1.55-${\mu}m$ InP/air-gap micromachined Fabry-Perot filter for optical communications," IEEE Photonics technology letters, vol. 10, no. 9, 1998, pp. 1259-1261. https://doi.org/10.1109/68.705609
  2. K. J. Vahala, "Optical microcavities," Nature, vol. 424, no. 6950, 2003, pp. 839-846. https://doi.org/10.1038/nature01939
  3. A. M. Armani and K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Optics Letters, vol. 31, no. 12, 2006, pp. 1896-1898. https://doi.org/10.1364/OL.31.001896
  4. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hansch, and J. Reichel, "A fiber Fabry-Perot cavity with high finesse," New J. of Physics, vol. 12, no. 6, 2010, pp. 065038. https://doi.org/10.1088/1367-2630/12/6/065038
  5. H. Kogelnik and T. Li, "Laser beams and resonators," Applied optics, vol. 5, no. 10, 1966, pp. 1550-1567. https://doi.org/10.1364/AO.5.001550
  6. B. Bederson and H. Walther, Advances in atomic, molecular, and optical physic, San Diego: Elsevier 2003.
  7. D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, "Laser micro-fabrication of concave, low-roughness features in silica," AIP Advances, vol. 2, no. 1, 2012, pp. 012119. https://doi.org/10.1063/1.3679721
  8. V. Machavaram, R. Badcock, and G. Fernando, "Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching," Sensors and Actuators A: Physical, vol. 138, no. 1, 2007, pp. 248-260. https://doi.org/10.1016/j.sna.2007.04.007
  9. G. Son and K. Yu, "Radiation from Concave Optical Fiber Tips Fabricated by Laser Induced Photothermal Effects," 2018 International Symposium on Antennas and Propagation (ISAP), Busan, 2018.
  10. G. Son and K. Yu, "A Study on the Radiation Characteristics of Concave Optical Fiber Tips." J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 5, 2017, pp. 731-736. https://doi.org/10.13067/JKIECS.2017.12.5.731
  11. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, Hoboken: John Wiley & Sons 2019.