DOI QR코드

DOI QR Code

Effect of Working Pressure on the Electrical and Optical Properties of ITZO Thin Films Deposited on PES Substrate with SiO2 Buffer Layer

공정압력이 SiO2 버퍼층을 갖는 PES 기판위에 증착한 ITZO 박막의 전기적 및 광학적 특성에 미치는 영향

  • 정양희 (전남대학교 전기 및 반도체공학과) ;
  • 최병균 (전남대학교 전기 및 반도체공학과) ;
  • 강성준 (전남대학교 전기 및 반도체공학과)
  • Received : 2019.10.01
  • Accepted : 2019.10.15
  • Published : 2019.10.31

Abstract

In this study, after 20nm-thick $SiO_2$ thin film was deposited by PECVD method on the PES substrate, which is known to have the highest heat resistance among plastic substrates, as a buffer layer, ITZO thin films were deposited by RF magnetron sputtering method to investigate the electrical and optical properties according to the working pressure. The ITZO thin film deposited at the working pressure of 3mTorr showed the best electrical properties with a resistivity of $8.02{\times}10^{-4}{\Omega}-cm$ and a sheet resistance of $50.13{\Omega}/sq.$. The average transmittance in the visible region (400-800nm) of all ITZO films was over 80% regardless of working pressure. The Figure of merit showed the largest value of $23.90{\times}10^{-4}{\Omega}^{-1}$ in the ITZO thin film deposited at 3mTorr. This study found that ITZO thin films are very promising materials to replace ITO thin films in next-generation flexible display devices.

본 연구에서는 플라스틱 기판 중에서 가장 내열성이 우수하다고 알려진 PES 기판위에 버퍼층으로 20nm두께로 $SiO_2$ 박막을 플라즈마 화학기상증착 법으로 증착한 후, ITZO 박막을 고주파 마그네트론 스퍼터링 법으로 증착하여 공정압력에 따른 ITZO 박막의 전기적 및 광학적 특성을 조사하였다. 공정압력 3 mTorr 에서 증착한 ITZO 박막이 $8.02{\times}10^{-4}{\Omega}-cm$의 비저항과 $50.13{\Omega}/sq.$의 면저항으로 가장 우수한 전기적 특성을 보였다. 모든 ITZO 박막의 가시광 영역(400-800 nm)에서 평균 투과도는 공정압력에 무관하게 80 %이상으로 나타났다. 재료평가지수는 3 mTorr에서 증착한 ITZO 박막에서 $23.90{\times}10^{-4}{\Omega}^{-1}$로 가장 큰 값을 나타내었다. 본 연구를 통해 ITZO 박막이 차세대 플렉시블 디스플레이 소자에서 ITO 박막을 대체할 매우 유망한 재료라는 것을 알 수 있었다.

Keywords

References

  1. J. H. Kim, M. W. Chon, and S. H. Choa, "Technology of Flexible Transparent Conductive Electrode for Flexible Electronic Devices," J. Microelectron. Packag. Soc., vol. 21, no. 2, June 2014, pp. 1-11. https://doi.org/10.6117/KMEPS.2014.21.2.001
  2. S. M. Lee, J. H. Kwon, S. I. Kwon, and K. C. Choi, "A Review of Flexible OLEDs Toward Highly Durable Unusual Displays," IEEE Trans. Electron Devices, vol. 64 issue 5, May 2017, pp. 1922-1931. https://doi.org/10.1109/TED.2017.2647964
  3. Y. Fujisaki, M. Nakata, Y Nakajima, H. Tsuji, M. Miyakawa, G. Motomura, H. Fukagawa, T. Shimizu, T. Tsuzuki, T. Takei, and T. Yamamoto, "Oxide/Organic Semiconductor Electronics on Plastic Substrates for Flexible AMOLED Displays," SID Symposium Digest of Technical Papers, vol.47, issue 1, May 2016, pp. 633-636.
  4. M. H. Chung, S. Y. Kim, D. H. Yoo, and J. H. Kim, "Materials and Characteristics of Emerging Transparent Electrodes," Appl. Chem. Eng., vol. 25, no. 3, Apr. 2014, pp. 242-248. https://doi.org/10.14478/ace.2014.1013
  5. T. Takatoshi, H. Takeshi, N. Tomoyuki, I. Hiroshi, K. Toshiyuki, F. Shun, and Y. Kazuhiro, "Development of a Vertically-stacked Color-tunable Polychromatic Organic-lightemitting-diode Device for Roll-to-roll Manufacturing," SID Symposium Digest of Technical Papers, vol. 47, issue 1, May 2016, pp. 42-45.
  6. H. Zhuang, J. Yan, C. Xu, and D. Meng, "Transparent Conductive $Ga_2O_3/Cu/ITO$ Multilayer Films Prepared on Flexible Substrates at Room Temperature," Applied Surface Science, vol. 307, no. 15, Apr. 2014, pp. 241-245. https://doi.org/10.1016/j.apsusc.2014.04.020
  7. B. Houng, S. L. Lin, S. W. Chen, and A. Wang, "Influence of An $In_2O_3$ Buffer Layer on The Properties of ITO Thin Films," Ceramics International, vol. 37, issue 8, Dec. 2011, pp. 3397-3403. https://doi.org/10.1016/j.ceramint.2011.05.142
  8. J. C. Park, Y. H. Joung, and S. J. Kang, "Electrical and Optical Properties of the IZTO Thin Film Deposited on PET Substrates with $SiO_2$ Buffer Layer," J. Korea Inst. Inf. Commun. Eng., vol. 21, no. 3, Mar. 2017, pp. 578-584. https://doi.org/10.6109/jkiice.2017.21.3.578
  9. J. C. Park, S. J. Kang, and Y. S. Yoon, "Properties of IZTO Thin Films Deposited on PEN Substrates with Different Working Pressures," J. Korean Ceram. Soc., vol. 52, no. 3, May 2015, pp. 224-227. https://doi.org/10.4191/kcers.2015.52.3.224
  10. S. W. Hong, "Polymeric Substrate Materials for Flexible Displays," Polymer Science and Technology, vol. 28, no. 6, Dec. 2017, pp. 470-475.
  11. U. Betz, M. K. Olsson, J. Marthy, M. F. Escola, and F. Atamny, "Thin Films Engineering of Indium Tin Oxide : Large Area Flat Panel Displays Application," Surf. Coat. Technol., vol. 200, issues 20-21, May 2006, pp. 5751-5759. https://doi.org/10.1016/j.surfcoat.2005.08.144
  12. J. Y. Lee, J. P. Shim, and H. K. Jung, "Influence of Surface Texturing on the Electrical and Optical Properties of Aluminum Doped Zinc Oxide Thin Films," Journal of information and communication convergence engineering, vol. 9, Aug. 2011, pp. 461-465. https://doi.org/10.6109/jicce.2011.9.4.461
  13. J. H. Kim, K. A. Jeon, G. H. Kim, and S. Y. Lee, "Electrical, Structural, and Optical Properties of ITO Thin Films Prepared at Room Temperature by Pulsed Laser Deposition," Apple. Surf. Sci., vol. 252, issue 13, Apr. 2006, pp. 4834-4837. https://doi.org/10.1016/j.apsusc.2005.07.134
  14. D. Ito, K. Masuko, B. Weintraub, L. Mckenzie, and J. Hutchison, "Convenient Preparation of ITO Nanoparticles Inks for Transparent Conductive Thin Films," J. Nanoparticle Research. vol. 14, no. 12, Dec. 2012, pp. 1-7.
  15. S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, "Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes," Adv. Mater., vol. 20, Nov. 2008, pp. 4061-4067. https://doi.org/10.1002/adma.200800338
  16. J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, "Organic Solar Cells with Solution-Processed Graphene Transparent Electrodes," Appl. Phys. Lett., vol. 92, issue 26, July 2008, pp. 263302-1-263302-3. https://doi.org/10.1063/1.2924771
  17. D. J. Son, Y. D. Ko, D. G. Jung, J. H. Boo, S. H. Choa, and Y. S. Kim, "Thermal Effect on Characteristics of IZTO Thin Films Deposited by Pulsed DC Magnetron Sputtering," Bull. Korean Chem. Soc., vol. 32, issue 3, Mar. 2011, pp. 847-851. https://doi.org/10.5012/bkcs.2011.32.3.847
  18. J. H. Bae, J. M. Moon, S. W. Jeong, J. J. Kim, J. W. Kang, D. G. Kim, J. K. Kim, J. W. Park, and H. K. Kim, "Transparent Conducting Indium Zinc Tin Oxide Anode for Highly Efficient Phosphorescent Organic Light Emitting Diodes," J. Electrochem. Soc., vol. 155, issue 1, Jan. 2008, pp. J1-J6. https://doi.org/10.1149/1.2799745
  19. T. J. Marks, J. G. C. Veinot, J. Cui, H. Yan, A. Wang, N. L. Edleman, J. Ni, Q. Huang, P. Lee, and N. R. Armstrong, "Progress in High Work Function TCO OLED Anode Alternatives and OLED Nanopixelation," Synthetic Met., vol. 127, issue 1-3, Mar. 2002, pp. 29-35. https://doi.org/10.1016/S0379-6779(01)00593-8
  20. H. M. Ali, "Characterization of a New Transparent - Conducting Material of ZnO Doped ITO Thin Films," Phys. Stat. Sol. A., vol. 202, issue 14, Nov. 2005, pp. 2742-2752. https://doi.org/10.1002/pssa.200521045
  21. G. Haacke, "New Figure of Merit for Transparent Conductors,", J. Appl. Phys., vol. 47, issue 9, Aug. 1976, pp. 4086-4089. https://doi.org/10.1063/1.323240