DOI QR코드

DOI QR Code

Fabrication and Output Characteristics of an (18+1)×1 Polarization-maintaining Pump and Signal Combiner for a High-power Fiber Laser

고출력 광섬유 레이저용 (18+1)×1 편광유지 펌프 및 신호광 결합기 제작 및 출력 특성

  • 이성헌 (LIG넥스원, 미래기술연구소 2팀) ;
  • 김기혁 (LIG넥스원, 미래기술연구소 2팀) ;
  • 양환석 (LIG넥스원, 미래기술연구소 2팀) ;
  • 조승용 (이상테크 기술연구소) ;
  • 김선주 (이상테크 기술연구소) ;
  • 박민규 (국방과학연구소 지상기술연구원 3부 1팀) ;
  • 이정환 (국방과학연구소 지상기술연구원 3부 1팀)
  • Received : 2019.07.22
  • Accepted : 2019.08.30
  • Published : 2019.10.25

Abstract

In this paper a pump combiner, a key component of a high-power fiber laser, was fabricated, and its output characteristics measured using a high-power performance measuring instrument. The $(18+1){\times}1$ pump combiner consists of an optical-fiber bundle of one signal fiber and 18 pump fibers, an output optical fiber, and housing. The signal and output fibers were fabricated using polarization-maintaining optical fiber. By measuring the loss of signal light along the tapering length of the optical-fiber bundle, the tapering length was optimized to 18 mm. Signal-light insertion loss, pump-light transmittance, and polarization extinction ratio of the fabricated $(18+1){\times}1$ pump combiner were measured as 6.5%, 98.07%, and 18.0 dB respectively. The temperature distribution of the pump combiner, at a high power of 2 kW using 18 pump laser diodes, was measured and analyzed using a thermal-imaging camera.

본 논문에서는 고출력 광섬유 레이저의 핵심 부품인 펌프광 결합기를 제작하였으며, 고출력 성능시험 장비를 이용하여 출력특성을 측정하였다. $(18+1){\times}1$ 펌프광 결합기는 1개의 신호광 광섬유와 18개의 펌프광 광섬유들로 이뤄진 광섬유 다발, 출력 광섬유와 하우징으로 구성되어 있다. 신호광 광섬유와 출력 광섬유는 편광유지 광섬유를 사용하여 제작하였다. 광섬유 다발의 테이퍼링 길이에 따른 신호광의 손실을 측정하여 테이퍼링 길이를 18 mm로 최적화하였다. 제작된 $(18+1){\times}1$ 펌프광 결합기의 신호광 삽입 손실, 펌프광 투과율 및 편광 소광률은 각각 6.5%, 98.07% 및 18.0 dB로 측정되었다. 18개의 펌프 레이저 다이오드를 이용하여 2 kW의 고출력에서 펌프광 결합기의 온도 분포를 열화상 카메라를 이용하여 측정 및 분석하였다.

Keywords

References

  1. E. Shcherbakov, V. Fomin, A. Abramov, A. Ferin, D. Mochalov, and V. P. Gapontsev, "Industrial grade 100 kW power CW fiber laser," in Proc. Advanced Solid State Lasers Congress (Optical Society of America, France, Oct. 2013), paper ATh4A.2.
  2. V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, "10 kW single mode fiber laser," in Proc. International Symposium on High-Power Fiber Lasers and Their Applications (Russia, St. Petersburg, Jun. 2010), SyTu-1.3.
  3. D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: Current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010). https://doi.org/10.1364/JOSAB.27.000B63
  4. F. Stutzki, F. Jansen, T. Eidan, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tunnermann, "High average power large-pitch fiber amplifier with robust single-mode operation," Opt. Lett. 36, 689-691 (2011). https://doi.org/10.1364/OL.36.000689
  5. I. Dajani, A. Flores, R. Holten, B. Anderson, B. Pulford, and T. Ehrenreich, "Multi-kilowatt power scaling and coherent beam combining of narrow-linewidth fiber lasers," Proc. SPIE 9728, 972801 (2016).
  6. N. A. Naderi, A. Flores, B. M. Anderson, and I. Dajani, "Kilowatt-level narrow-linewidth monolithic fiber amplifier based on laser gain competition," Proc. SPIE 9728, 972804 (2016).
  7. F. Chen, J. Ma, C. Wei, R. Zhu, W. Zhou, Q. Yuan, S. Pan, J. Zhang, Y. Wen, and J. Dou, "10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters," Opt. Express 25, 32783-32791 (2017). https://doi.org/10.1364/OE.25.032783
  8. Y. H. Park, Y. S. Youn, M. W. Jung, C. S. Jun, B.-A. Yu, and W. J. Shin, "Polarization-maintained single-mode 400-W Yb-doped fiber laser with 2.5-GHz linewidth from a 3-stage MOPA system," Korean J. Opt. Photon. 29, 159-165 (2018). https://doi.org/10.3807/KJOP.2018.29.4.159
  9. F. Gonthier, L. Martineau, N. Azami, M. Faucher, F. Seguin, D. Stryckman, and A. Villeneuve, "High-power all-fiber components: The missing link for high power fiber lasers," Proc. SPIE 5335, 266-276 (2004).
  10. M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, "Thermal effects in high-power CW fiber laser," Proc. SPIE 7195, 71951U (2009).
  11. Q. Xiao, H. Ren, X. Chen, P. Yan, and M. Gong, "Tapered fiber bundle 7 $\times$ 1 end-pumping coupler capable of high power CW operation," IEEE Photonics Technol. Lett. 25, 2442-2445 (2013). https://doi.org/10.1109/LPT.2013.2288111
  12. J. Wu, Y. Sun, Y. Wang, T. Li, Y. Feng, and Y. Ma, "The study of the thermally expanded core technique in end-pumped (N+1)$\times$1 type combiner," Proc. SPIE 9255, 925501 (2015).
  13. B. Sevigny, P. Poirier, and M. Faucher, "Pump combiner loss as function of input numerical aperture power distribution," Proc. SPIE 7195, 719523 (2009).
  14. B. Wang and E. Mies, "Review of fabrication techniques for fused fiber components for fiber lasers," Proc. SPIE 7195, 71950A (2009).
  15. I. S. Choi, J. Park, H. Jeong, J. W. Kim, M. Y. Jeon, and H. S. Seo, "Fabrication of 4 $\times$ 1 signal combiner for high-power lasers using hydrofluoric acid," Opt. Express 26, 30667-30677 (2018). https://doi.org/10.1364/OE.26.030667
  16. M. A. Lapointe, S. Chatigny, M. Piche, M. C. Skaff, and J. N. Maran, "Thermal effects in high power CW fiber lasers," Proc. SPIE 7195, 71951U (2009).