DOI QR코드

DOI QR Code

A fast and robust procedure for optimal detail design of continuous RC beams

  • Received : 2019.01.29
  • Accepted : 2019.08.30
  • Published : 2019.10.25

Abstract

The purpose of the present study is to present a new approach to designing and selecting the details of multidimensional continuous RC beam by applying all strength, serviceability, ductility and other constraints based on ACI318-14 using Teaching Learning Based Optimization (TLBO) algorithm. The optimum reinforcement detailing of longitudinal bars is done in two steps. in the first stage, only the dimensions of the beam in each span are considered as the variables of the optimization algorithm. in the second stage, the optimal design of the longitudinal bars of the beam is made according to the first step inputs. In the optimum shear reinforcement, using gradient-based methods, the most optimal possible mode is selected based on the existing assumptions. The objective function in this study is a cost function that includes the cost of concrete, formwork and reinforcing steel bars. The steel used in the objective function is the sum of longitudinal and shear bars. The use of a catalog list consisting of all existing patterns of longitudinal bars based on the minimum rules of the regulation in the second stage, leads to a sharp reduction in the volume of calculations and the achievement of the best solution. Three example with varying degrees of complexity, have been selected in order to investigate the optimal design of the longitudinal and shear reinforcement of continuous beam.

Keywords

References

  1. ACI 318 (2014), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, USA.
  2. Akin, A. and Saka, M.P. (2015), "Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318-05 provisions", Comput. Struct., 147, 79-95. https://doi.org/10.1016/j.compstruc.2014.10.003.
  3. Amir, O. and Shakour, E. (2018), "Simultaneous shape and topology optimization of prestressed concrete beams", Struct. Multidisip. O., 57(5), 1831-1843. https://doi.org/10.1007/s00158-017-1855-5.
  4. Arab, H.G. and Ghasemi, M.R. (2015), "A fast and robust method for estimating the failure probability of structures", P. I. Civil Eng.-Struct. B., 168(4), 298-309. https://doi.org/10.1680/stbu.13.00091.
  5. Barros, M.H.F.M., Martins, R.A.F. and Barros, A.F.M. (2005), "Cost optimization of singly and doubly reinforced concrete beams with EC2-2001", Struct. Multidisip. O., 30(3), 236-242. https://doi.org/10.1007/s00158-005-0516-2.
  6. Chakrabarty, B.K. (1992), "Model for optimal design of reinforced concrete beam", J. Struct. Eng., ASCE, 118(11), 3238-3242. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3238).
  7. Chakrabarty, B.K. (1992), "Models for optimal design of reinforced concrete beams", Comput. Struct., 42(3), 447-451. https://doi.org/10.1016/0045-7949(92)90040-7.
  8. Cheng, M.Y. and Prayogo, D. (2017), "A novel fuzzy adaptive teaching-learning-based optimization (FATLBO) for solving structural optimization problems", Eng. Comput., 33(1), 55-69. https://doi.org/10.1007/s00366-016-0456-z.
  9. Chou, T. (1977), "Optimum reinforced concrete T-beam sections", J. Struct. Div., ASCE, 103(ASCE 13120).
  10. Coello, C.C., Christiansen, A.D. and Hernandez, F.S. (1997), "A simple genetic algorithm for the design of reinforced concrete beams", Eng. Comput., 13(4), 185-196. https://doi.org/10.1007/BF01200046.
  11. Deb, K. (2000), "An efficient constraint handling method for genetic algorithms", Comput. Meth. Appl. M., 186(2-4), 311-338. https://doi.org/10.1016/S0045-7825(99)00389-8.
  12. Dizangian, B. and Ghasemi, M.R. (2015), "Ranked-based sensitivity analysis for size optimization of structures", J. Mech. Des., 137(12), 121402. https://doi.org/10.1115/1.4031295.
  13. Farshchin, M., Camp, C.V. and Maniat, M. (2016), "Multi-class teaching-learning-based optimization for truss design with frequency constraints", Eng. Struct., 106, 355-369. https://doi.org/10.1016/j.engstruct.2015.10.039.
  14. Fedghouche, F. (2017), "Cost optimum design of doubly reinforced high strength concrete T-beams", Sci. Iran., 24(2), 476.
  15. Fedghouche, F. and Tiliouine, B. (2012), "Minimum cost design of reinforced concrete T-beams at ultimate loads using Eurocode2", Eng. Struct., 42, 43-50. https://doi.org/10.1016/j.engstruct.2012.04.008.
  16. Friel, L.L. (1974), "Optimum singly reinforced concrete sections", ACI J., 71(11), 556-558.
  17. Gandomi, A.H., Kashani, A.R., Roke, D.A. and Mousavi, M. (2017), "Optimization of retaining wall design using evolutionary algorithms", Struct. Multidisip. O., 55(3), 809-825. https://doi.org/10.1007/s00158-016-1521-3.
  18. Govindaraj, V. and Ramasamy, J.V. (2005), "Optimum detailed design of reinforced concrete continuous beams using genetic algorithms", Comput. Struct., 84(1-2), 34-48. https://doi.org/10.1016/j.compstruc.2005.09.001.
  19. Guerra, A. and Kiousis, P.D. (2006), "Design optimization of reinforced concrete structures", Comput. Concrete, 3(5), 313-334. https://doi.org/10.12989/cac.2006.3.5.313.
  20. Hanoon, A.N., Jaafar, M.S., Hejazi, F. and Aziz, F.N.A. (2017), "Strut-and-tie model for externally bonded CFRP-strengthened reinforced concrete deep beams based on particle swarm optimization algorithm: CFRP debonding and rupture", Constr. Build. Mater., 147, 428-447. https://doi.org/10.1016/j.conbuildmat.2017.04.094.
  21. Jahjouh, M.M., Arafa, M.H. and Alqedra, M.A. (2013), "Artificial Bee Colony (ABC) algorithm in the design optimization of RC continuous beams", Struct. Multidisip. O., 47(6), 963-979. https://doi.org/10.1007/s00158-013-0884-y.
  22. Kanagasundaram, S. and Karihaloo, B.L. (1991), "Minimum-cost reinforced concrete beams and columns", Comput. Struct., 41(3), 509-518. https://doi.org/10.1016/0045-7949(91)90145-C.
  23. Kanno, Y. (2019), "Alternating direction method of multipliers as simple heuristic for topology optimization of a truss with uniformed member cross sections", J. Mech. Des., 141(1), 011403. https://doi.org/10.1115/1.4041174.
  24. Kaveh, A. and Sabzi, O. (2011), "A comparative study of two meta-heuristic algorithms for optimum design of reinforced concrete frames", Int. J. Civil Eng., 9(3), 193-206.
  25. Kirsch, U. (1983), "Multilevel optimal design of reinforced concrete structures", Eng. Optim., 6(4), 207-212. https://doi.org/10.1080/03052158308902471.
  26. Koumousis, V.K. and Arsenis, S.J. (1998), "Genetic algorithms in optimal detailed design of reinforced concrete members", Comput-Aid. Civil Infrastr. Eng., 13(1), 43-52. https://doi.org/10.1111/0885-9507.00084.
  27. Leps, M. and Sejnoha, M. (2003), "New approach to optimization of reinforced concrete beams", Comput. Struct., 81(18-19), 1957-1966. https://doi.org/10.1016/S0045-7949(03)00215-3.
  28. Mergos, P.E. (2018), "Seismic design of reinforced concrete frames for minimum embodied $CO_2$ emissions", Energy Build., 162, 177-186. https://doi.org/10.1016/j.enbuild.2017.12.039.
  29. Mezura-Montes, E. and Coello, C.A.C. (2011), "Constrainthandling in nature-inspired numerical optimization: past, present and future", Swarm Evol. Comput., 1(4), 173-194. https://doi.org/10.1016/j.swevo.2011.10.001.
  30. Munk, D.J., Vio, G.A. and Steven, G.P. (2015), "Topology and shape optimization methods using evolutionary algorithms: a review", Struct. Multidisip. O., 52(3), 613-631. https://doi.org/10.1007/s00158-015-1261-9.
  31. Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017), "A novel heuristic search algorithm for optimization with application to structural damage identification", Smart. Struct. Syst., 19, 449-461. https://doi.org/10.12989/sss.2017.19.4.449.
  32. Ozturk, H.T., Durmus, A. and Durmus, A. (2012), "Optimum design of a reinforced concrete beam using artificial bee colony algorithm", Comput. Concrete, 10(3), 295-306. https://doi.org/10.12989/cac.2012.10.3.295.
  33. Paya-Zaforteza, I., Yepes, V., Hospitaler, A. and Gonzalez-Vidosa, F. (2009), "$CO_2$-optimization of reinforced concrete frames by simulated annealing", Eng. Struct., 31(7), 1501-1508. https://doi.org/10.1016/j.engstruct.2009.02.034.
  34. Perera, R. and Vique, J. (2009), "Strut-and-tie modelling of reinforced concrete beams using genetic algorithms optimization", Constr. Build. Mater., 23(8), 2914-2925. https://doi.org/10.1016/j.conbuildmat.2009.02.016.
  35. Perez, J.L., Cladera, A., Rabuñal, J.R. and Martinez-Abella, F. (2012), "Optimization of existing equations using a new genetic programming algorithm: Application to the shear strength of reinforced concrete beams", Adv. Eng. Softw., 50, 82-96. https://doi.org/10.1016/j.advengsoft.2012.02.008.
  36. Prakash, A., Agarwala, S.K. and Singh, K.K. (1988), "Optimum design of reinforced concrete sections", Comput. Struct., 30(4), 1009-1011. https://doi.org/10.1016/0045-7949(88)90142-3.
  37. Rao, R.V. and More, K.C. (2015), "Optimal design of the heat pipe using TLBO (teaching-learning-based optimization) algorithm", Energy, 80, 535-544. https://doi.org/10.1016/j.energy.2014.12.008.
  38. Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems", Comput. Aid. Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015.
  39. Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2012), "Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems", Inform. Sci., 183(1), 1-15. https://doi.org/10.1016/j.ins.2011.08.006.
  40. Sanchez-Olivares, G. and Tomas, A. (2017), "Improvements in meta-heuristic algorithms for minimum cost design of reinforced concrete rectangular sections under compression and biaxial bending", Eng. Struct., 130, 162-179. https://doi.org/10.1016/j.engstruct.2016.10.010.
  41. Sarma, K.C. and Adeli, H. (1998), "Cost optimization of concrete structures", J. Struct. Eng., ASCE, 124(5), 570-578. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(570).
  42. Senouci, A.B. and Al-Ansari, M.S. (2009), "Cost optimization of composite beams using genetic algorithms", Adv. Eng. Softw., 40(11), 1112-1118. https://doi.org/10.1016/j.advengsoft.2009.06.001.
  43. Sharafi, P., Hadi, M.N. and Teh, L.H. (2012), "Geometric design optimization for dynamic response problems of continuous reinforced concrete beams", J. Comput. Civil Eng., 28(2), 202-209. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000263.
  44. Tapao, A. and Cheerarot, R. (2017), "Optimal parameters and performance of artificial bee colony algorithm for minimum cost design of reinforced concrete frames", Eng. Struct., 151, 802-820. https://doi.org/10.1016/j.engstruct.2017.08.059.
  45. Wang, B.C., Li, H.X. and Feng, Y. (2018), "An improved teaching-learning-based optimization for constrained evolutionary optimization", Inform. Sci., 456, 131-144. https://doi.org/10.1016/j.ins.2018.04.083.