DOI QR코드

DOI QR Code

Computational Model for Hydrodynamic Pressure on Radial Gates during Earthquakes

레디얼 게이트에 작용하는 지진 동수압 계산 모형

  • Phan, Hoang Nam (Faculty of Road and Bridge Engineering, The University of Danang) ;
  • Lee, Jeeho (Department of Civil and Environmental Engineering, Dongguk University-Seoul)
  • 판홍남 (다낭대학교 도로 및 교량공학부) ;
  • 이지호 (동국대학교 건설환경공학과)
  • Received : 2019.08.17
  • Accepted : 2019.08.27
  • Published : 2019.10.31

Abstract

In this study, a computational model approach for the modeling of hydrodynamic pressures acting on radial gates during strong earthquakes is proposed. The use of the dynamic layering method with the Arbitrary Lagrangian Eulerian (ALE) algorithm and the SIMPLE method for simulating free reservoir surface flow in addition to moving boundary interfaces between the fluid domain and a structure due to earthquake excitation are suggested. The verification and validation of the proposed approach are realized by comparisons performed using the renowned formulation derived by the experimental results for vertical and inclined dam surfaces subjected to earthquake excitation. A parameter study for the truncated lengths of the two-dimensional fluid domain demonstrates that twice the water level leads to efficient and converged computational results. Finally, numerical simulations for large radial gates with different curvatures subjected to two strong earthquakes are successfully performed using the suggested computational model.

강한 지진의 영향에 있는 레디얼 게이트에 작용하는 동수압 산정을 위한 계산 모형이 제시되었다. 지진동으로 움직이는 구조물의 영향을 호소부와의 이동경계면으로 처리함과 아울러 강한 지진동 효과를 고려하여 동적 레이어링법이 적용된 ALE 알고리즘과 호소부 자유수면 거동을 위한 SIMPLE법을 사용하는 것이 제안된다. 제안된 방법은 단순한 수직 또는 경사 댐체 벽면에 대하여 널리 알려진 실험 결과 및 그로부터 유도된 제안식과 비교하여 타당성과 유효성이 증명되었다. 계산모형에서 사용할 호소부 상류부 측의 무한경계까지의 거리를 산정하기 위한 파라미터 분석을 수행하여 호소부 수위의 2배가 최적의 길이임을 관찰하였다. 마지막으로 제안된 계산 모형을 사용하여 여러 곡률의 대형 레디얼 게이트에 작용하는 지진동수압을 성공적으로 산출하였다.

Keywords

References

  1. ANSYS (2010) ANSYS FLUENT 12.0/12.1 Documentation, ANSYS, Inc., NH, USA.
  2. Chakrabarti, P., Chopra, A.K. (1973). Earthquake Analysis of Gravity Dams including Hydrodynamic Interaction, Earthq. Eng. Struct. Dyn., 2, pp.143-160. https://doi.org/10.1002/eqe.4290020205
  3. Chen, B., Yuan, Y. (2011) Hydrodynamic Pressures on Arch Dam during Earthquakes, J. Hydraul. Eng., 137(1), pp.34-44. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000268
  4. Chen, B.F. (1994) Nonlinear Hydrodynamic Pressure on Dam Faces with Arbitrary Reservoir Shapes, J. of Hydra Res., 32(3), pp.401-413. https://doi.org/10.1080/00221689409498742
  5. Chen, B.F. (1996) Nonlinear Hydrodynamic Effects on Concrete Dam, Engrg. Str., 18 (3), pp.201-212. https://doi.org/10.1016/0141-0296(95)00138-7
  6. Chen, B.F., Yuan, Y.S., Lee, J.F. (1999) Three-Dimensional Nonlinear Hydrodynamic Pressures by Earthquakes on Dam Faces with Arbitrary Reservoir Shapes, J. Hydra. Res., 37(2), pp.163-187. https://doi.org/10.1080/00221689909498304
  7. Chopra, A.K. (1970) Earthquake Response of Concrete Gravity Dams, Report No. UCB/EERC-70/01, University of California at Berkeley, CA, USA.
  8. Chopra, A.K. (1978) Earthquake Resistant Design of Concrete Gravity Dams, J. Struct. Div., ASCE, 104, pp.953-971. https://doi.org/10.1061/JSDEAG.0004946
  9. Chwang, A.T. (1978) Hydrodynamic Pressures on Sloping Dams during Earthquakes. Part 2, Exact Theory, J. Fluid Mech., 87, pp.342-348.
  10. Chwang, A.T. (1983) Nonlinear Hydrodynamic Pressure on an Accelerating Plate, J. Physics Fluids, 26(2), pp.383-387. https://doi.org/10.1063/1.864147
  11. Chwang, A.T., Housner, G.W. (1978) Hydrodynamic Pressures on Sloping Dams during Earthquakes. Part 1, Momentum Method, J. Fluid Mech., 87, pp.335-341. https://doi.org/10.1017/S0022112078001639
  12. Donea, J., Giuliani, S., Halleux, J.P. (1982) An Arbitrary Lagrangian-Eulerian Finite Element Method for Transient Fluid-Structure Interaction, Comput. Methods Appl. Mech. Engrg., 33, pp.689-723. https://doi.org/10.1016/0045-7825(82)90128-1
  13. Fenves, G., Chopra, A.K. (1984) Earthquake Analysis and Response of Concrete Gravity Dams, Report No. UCB/EERC-84/10, University of California at Berkeley, CA, USA.
  14. Hall, J.F., Chopra, A.K. (1982) Two-Dimensional Dynamic Analysis of Concrete Gravity and Embankment Dams including Hydrodynamic Effects, Earthq. Eng. Struct. Dyn., 10, pp.305-332. https://doi.org/10.1002/eqe.4290100211
  15. Hirt, C.W., Amsden, A.A., Cook, J.L. (1974) An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds, J. Comput. Phys., 14, pp.227-253. https://doi.org/10.1016/0021-9991(74)90051-5
  16. Hirt, C.W., Nichols, B.D. (1981) Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys., 39, pp.201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  17. Patankar, S.V., Spalding, D.B. (1972) A Calculation Procedure for Hear, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows, Int. J. Heat Mass Transfer, 15(10), pp.1787-1806. https://doi.org/10.1016/0017-9310(72)90054-3
  18. Pelecanos, L., Kontoe, S., Zdravkovic, L. (2016) Dam-Reservoir Interaction Effects on the Elastic Dynamic Response of Concrete and Earth Dams, Soil Dyn. Earthq. Eng., 82, pp.138-141. https://doi.org/10.1016/j.soildyn.2015.12.003
  19. Phan, H.N., Lee, J. (2010) Flood Impact Pressure Analysis of Vertical Wall Structures using PLIC-VOF Method with Lagrangian Advection Algorithm, J. Comput. Struct. Eng. Inst. Korea, 23(6) pp.675-682.
  20. Rider, W.J., Kothe, D.B. (1998) Reconstructing Volume Tracking, J. Comput. Phys., 141, pp.112-152. https://doi.org/10.1006/jcph.1998.5906
  21. Saini, S.S., Bettess, P.,d Zienkiewicz, O.C. (1978) Coupled Hydrodynamic Response of Concrete Gravity Dams using Finite and Infinite Elements, Earthq. Eng. Struct. Dyn., 6, pp.363-374. https://doi.org/10.1002/eqe.4290060404
  22. USACE (2000) Design of Spillway Tainter Gates, EM 1110-2-2702, US Army Corps of Engineers.
  23. USACE (2007) Earthquake Design and Evaluation of Concrete Hydraulic Structures, EM 1110-2-6053, US Army Corps of Engineers.
  24. USBR (2006) State-of-Practice for the Nonlinear Analysis of Concrete Dams at the Bureau of Reclamation, Bureau of Reclamation, US Department of the Interior.
  25. Westergaard, H.M. (1933) Water Pressure on Dams during Earthquakes, Trans. ASCE, 98, pp.418-472.
  26. Youngs, D.L. (1982) Time-dependent Multi-Material Flow with Large Fluid Distortion, Numerical Method for Fluid Dynamics, Academic Press, NY, pp.273-285.
  27. Zangar, C.N. (1952) Hydrodynamic Pressures on Dams Due to Horizontal Earthquake Effects, Bureau of Reclamation, US Department of the Interior.