DOI QR코드

DOI QR Code

Impact Tests and Numerical Simulations of Sandwich Concrete Panels for Modular Outer Shell of LNG Tank

모듈형 LNG 저장탱크 외조를 구성하는 샌드위치 콘크리트 패널의 충돌실험 및 해석

  • Lee, Gye-Hee (Department of Ocean Civil Engineering, Mokpo National Maritime University) ;
  • Kim, Eun (System Safety Lab., Korea Shipbuilding & Offshore Engineering Co.)
  • 이계희 (목포해양대학교 해양건설공학과) ;
  • 김언 (한국조선해양 시스템안전연구실)
  • Received : 2019.08.28
  • Accepted : 2019.08.30
  • Published : 2019.10.31

Abstract

Tests using a middle velocity propulsion impact machine (MVPIM) were performed to verify the impact resistance capability of sandwich concrete panels (SCP) in a modular liquefied natural gas (LNG) outer tank, and numerical models were constructed and analyzed. $2{\times}2m$ specimens with plain sectional characteristics and specimens including a joint section were used. A 51 kg missile was accelerated above 45 m/s and impacted to have the design code kinetic energy. Impact tests were performed twice according to the design code and once for the doubled impact speed. The numerical models for simulating impact behaviors were created by LS-DYNA. The external steel plate and filled concrete of the panel were modeled as solid elements, the studs as beam elements, and the steel plates as elasto-plastic material with fractures; the CSCM material model was used for concrete. The front plate deformations demonstrated good agreement with those of other tests. However the rear plate deformations were less. In the doubled speed test for the plain section specimen, the missile punctured both plates; however, the front plate was only fractured in the numerical analysis. The impact energy of the missile was transferred to the filled concrete in the numerical analysis.

모듈형 LNG Tank의 외조를 구성하는 SCP(sandwich concrete panel)에 대해서 중속충돌시험기로 충돌시험을 수행하고 이에 대한 수치해석을 수행하였다. 충돌시험에 사용된 시험체는 가로세로 각각 2m로 외조의 일반단면과 연결부단면의 특성을 가지도록 제작하였다. 51kg의 탄자를 설계기준에 규정된 충돌에너지를 갖도록 중속충돌시험기로 45m/sec로 이상의 속도로 가속하여 충돌시켰다. 이런 충돌시험을 두 차례 반복하고 시험체의 극한능력을 평가하기 위하여 충돌속도를 2배로 하여 충돌시켰다. 충돌시험의 수치해석 모델은 LS-DYNA를 이용하여 수행되었다. 외측의 강판와 그 사이의 충진콘크리트를 고체요소로 모델링하고 전단연결재는 보요소를 이용하여 모델링하였다. 강재의 재료모델은 탄소성 및 파단거동을 고려하였으며 콘크리트의 재료는 CSCM재료로 모델링하였다. 해석에서 전면부의 충돌변형은 시험에서 얻어진 변형과 유사한 값을 얻었으나 후면부의 변형은 시험결과와 다소 작은 값을 보였다. 일반부 단면에 대한 2배속 충돌시험에서는 전후면의 강판이 파손되었으나 해석결과에서는 전면부의 강판만 파손되었다. 수치해석에서 충돌에너지는 주로 충진 콘크리트로 전이되었는데 이는 이전 연구에서 보였던 고에너지를 가진 충돌의 경우와 다른 경향이다. 작성된 모델은 구조적으로 보수적인 결과를 보이므로 실제 설계에 적용할 수 있을 것으로 판단된다.

Keywords

References

  1. European Committee for Standardization(CEN) (2006) Design and Manufacture of Site Built, Vertical, Cylindrical, Flat-Bottomed Steel Tanks for the Storage of Refrigerated, Liquefied Gases with Operating Temperatures between $0^{\circ}C$ and $-165^{\circ}C$. General, BS EN 14620-1:2006.
  2. Extreme Performance Testing Center(EPTC) (2019) Report of SCP Impact Test using Middle Velocity Propulsion Impact Machine.
  3. Hyundai Heavy Industry(HHI) (2015) General Approval of 60K HMLST, Structure Research Dep. HHI.
  4. Jiang, H., Chorzepa, M.G. (2014) Aircraft Impact Analysis of Nuclear Safety-Related Concrete Structures: A Review, Eng. Fail. Anal., 46, pp.118-133. https://doi.org/10.1016/j.engfailanal.2014.08.008
  5. Lee, G.H. (2017) Collision Behaviors Analysis of Sandwich Concrete Panel for Outer Shell of LNG Tank, J. Comput. Struct. Eng. Inst. Korea, 30(6), pp.485-493. https://doi.org/10.7734/COSEIK.2017.30.6.485
  6. Livermore Software Technology Corporation (LSTC) (2017) LS-DYNA User's Manual Ver. R10.1.
  7. OECD (2014) Improving Robustness Assessment Methodologies for Structures Impacted by Missiles (IRIS2012) :Final Report, OECD.
  8. Sadiq, M., Yun, Z.X., Rong, P. (2014) Simulation Analysis of Impact Tests of Steel Plate Reinforced Concrete and Reinforced Concrete Slabs Against Aircraft Impact and Its Validation with Experimental Results, Nucl. Eng. & Des., 273(1), pp.653-667. https://doi.org/10.1016/j.nucengdes.2014.03.031
  9. Seoul National University (2018) Extreme Performance Testing Center (EPTC), Brochure for Extreme Performance Testing Center (EPTC), http://www.koced.or.kr.
  10. Sohel, M.A., Liew, Y.R. (2014) Behavior of Steel-Concrete-Steel Sandwich Slabs Subject to Impact Load, J. Constr. Steel Res., 100, pp.163-175. https://doi.org/10.1016/j.jcsr.2014.04.018
  11. Thai, D.K., Kim, S.E. (2015) Failure Analysis of UHPFRC Panels Subjected to Aircraft Engine Model Impact, Eng. Fail. Anal., 57, pp.88-104. https://doi.org/10.1016/j.engfailanal.2015.07.005