DOI QR코드

DOI QR Code

High temperature electrical properties of Sr-and Mg-Doped LaAlO3

억셉터(Sr, Mg)가 첨가된 LaAlO3의 고온 전도 특성

  • Park, Ji Young (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Park, Hee Jung (Department of Materials Science and Engineering, Dankook University)
  • 박지영 (경북대학교 과학기술대학 나노소재공학부) ;
  • 박희정 (단국대학교 신소재공학과)
  • Received : 2019.08.15
  • Accepted : 2019.10.14
  • Published : 2019.10.31

Abstract

Perovskite-type oxides have consistently attracted considerable attention for their applications in high-temperature electrochemical devices, such as electrolytes and electrodes of solid oxide fuel cells, oxygen permeating membranes and sensors etc. Among them, the electrical conductivity of 10 % Sr and 10 % Mg doped $LaAlO_3$ (LSAM9191) was measured using impedance spectroscopy and 4-probe d.c. method. Below $550^{\circ}C$, the grain boundary resistance mostly determined the overall conductivity; however, it nearly disappeared above $800^{\circ}C$. Using the defect model and curve fitting, the ionic and electronic conductivity contributions were also separated. In the temperature region where the sample resistance is mostly determined by the grain volume property, LSAM9191 was an oxygen ion conductor at low $Po_2$ and a mixed conductor at high $Po_2$. With increasing temperature, the ionic conduction region only slightly increased. Thus, LSAM9191 is a promising material as an oxygen ion conductor at high temperature and in low $Po_2$.

고체전지, 산화물연료전지, 센서, 산화물 분리막 등 에너지 재료로 활용이 무궁한 산소 이온 전도체 중 acceptor가 첨가된 $LaAlO_3$의 전기적 특성과 고온에서의 혼합전도체로 사용 가능성을 연구하였다. Sr과 Mg을 $LaAlO_3$에 동시에 첨가하여 만든 LSAM의 전기적 특성을 교류(a.c.)와 직류(d.c.) 방법을 이용하여 다양한 산소 분압에서 측정하였다. 교류 임피던스 방법을 이용하여 LSAM의 전체 저항에서 입자(grain) 저항과 입계(grain boundary) 저항을 분리한 결과, $550^{\circ}C$ 이하의 온도에서는 입계 저항이 지배적이나 $800^{\circ}C$ 이상의 온도에서는 입자 저항이 대부분임을 알 수 있었다. 또 산소분압에 따른 전도도 측정을 물질의 결함모델(defect model)을 이용하여 분석해 전체 전도도를 이온 전도도와 전자 전도도로 분리하였다. 그 결과, $800^{\circ}C$ 이상의 고온에서 LSAM은 낮은 산소분압($Po_2$ < $10^{-10}atm$)에서는 산소이온 전도체이고 높은 산소분압($Po_2$ > $10^{-5}atm$)에서는 혼합전도체의 거동을 보였다. 또 온도가 증가하여도 산소이온 전도가 주도적인 산소분압의 영역은 줄어들지 않았고 낮은 산소분압에서도 안정적인 전기적 특성을 보이는 등으로 보아, LSAM은 고온의 낮은 산소분압(T > $1500^{\circ}C$, $Po_2$ < $10^{-10}atm$) 조건에서 용강에서의 산소이온센서와 같은 산소이온체로의 사용 가능성이 높다.

Keywords

References

  1. K.R. Kendall, C. Navas, J.K. Thomas and H.C. zur Loye, "Recent developments in perovskite-based oxide ion conductors", Solid State Ionics 82 (1995) 215. https://doi.org/10.1016/0167-2738(95)00207-4
  2. W.J. Weber, H.L. Tuller, T.O. Mason and A.N. Cormack, "Research needs and opportunities in highly conducting electroceramics", Mater. Sci. Eng. B18 (1993) 52.
  3. K. Huang, M. Feng, J.B. Goodenough and M. Schmerling, "Characterization of Sr-doped $LaMnO_3$ and $LaCoO_3$ as cathode materials for a doped $LaGaO_3$ ceramic fuel cell", J. Electrochem. Soc. 143 (1996) 3630. https://doi.org/10.1149/1.1837262
  4. T. Ishihara, H. Matsuda and Y. Takita, "Doped $LaGaO_3$ perovskite type oxide as a new oxide ionic conductor", J. Am. Chem. Soc. 116 (1994) 3801. https://doi.org/10.1021/ja00088a016
  5. J.W. Stevenson, T.R. Amstrong, L.R. Pederson, J. Li, C.A. Lewinsohn and S. Baskaran, "Effect of A-site cation nonstoichiometry on the properties of doped lanthanum gallate", Solid State Ionics 113-115 (1998) 571. https://doi.org/10.1016/S0167-2738(98)00324-5
  6. K. Yamaji, T. Horita, M. Ishikawa, N. Sakai and H. Yokokawa, "Chemical stability of the $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{2.85}$ electrolyte in a reducing atmosphere", Solid State Ionics 121 (1999) 217. https://doi.org/10.1016/S0167-2738(99)00039-9
  7. T. Takahashi and H. Iwahara, "Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell", Energy Convers. 11 (1971) 105. https://doi.org/10.1016/0013-7480(71)90121-5
  8. K. Nomura and S. Tanase, "Electrical conduction behavior in $(La_{0.9}Sr_{0.1})MIIIO_{3-{\delta}}$ (MIII=Al, Ga, Sc, In, and Lu) perovskites", Solid State Ionics 98 (1997) 229. https://doi.org/10.1016/S0167-2738(97)00101-X
  9. H. Hayashi, H. Inaba, M. Matsuyama, N.G. Lan, M. Dokiya and H. Tagawa, "Structure consideration on the ionic conductivity of perovskite-type oxides", Solid State Ionics 122 (1999) 1. https://doi.org/10.1016/S0167-2738(99)00066-1
  10. P.S. Anderson, F.M.B. Marques, D.C. Sinclair and A.R. West, "Ionic and electronic conduction in $La_{0.95}Sr_{0.05}GaO_{3-{\delta}},\;La_{0.95}Sr_{0.05}AlO_{3-{\delta}},\;Y_{0.95}Sr_{0.05}AlO_{3-{\delta}}$", Solid State Ionics 118 (1999) 229. https://doi.org/10.1016/S0167-2738(98)00465-2
  11. D. Lybye, F.W. Poulsen and M. Mogensen, "Conductivity of A- and B-site doped $LaAlO_3,\;LaGaO_3,\;LaScO_3$ and $LaInO_3$ perovskite", Solid State Ionics 128 (2000) 91. https://doi.org/10.1016/S0167-2738(99)00337-9
  12. T.L. Nguyen, M. Dokiya, S. Wang, J. Tagawa and T. Hashimoto, "The effect of oxygen vacancy on the oxide ion mobility in $LaAlO_3$-based oxides", Solid State Ionics 130 (2000) 229. https://doi.org/10.1016/S0167-2738(00)00640-8
  13. K.K. Turekian and K.H. Wedepohl, "Distribution of the elements in some major units of the earth's crust", GSA Bulletin 72 (1961) 175. https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2