DOI QR코드

DOI QR Code

Hydrophobic property of surface glaze of ceramic tiles by copper powder addition

구리 분말 첨가를 통한 도자타일 표면유약의 소수화 특성

  • Choi, Cheong-Soo (Icheon Branch, Korean Institute of Ceramic Engineering and Technology) ;
  • Han, Kyu-Sung (Icheon Branch, Korean Institute of Ceramic Engineering and Technology) ;
  • Hwang, Kwang-Taek (Icheon Branch, Korean Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Icheon Branch, Korean Institute of Ceramic Engineering and Technology)
  • 최청수 (한국세라믹기술원 이천분원) ;
  • 한규성 (한국세라믹기술원 이천분원) ;
  • 황광택 (한국세라믹기술원 이천분원) ;
  • 김진호 (한국세라믹기술원 이천분원)
  • Received : 2019.09.20
  • Accepted : 2019.10.15
  • Published : 2019.10.31

Abstract

Ceramic tiles, which are widely used as interior and exterior materials for construction, have recently been required to have pollution prevention function. In order to remove contaminants, many researches of ceramic tiles with hydrophilic surface property through $TiO_2$ coating and hydrophobic surface property by improving the flow of water droplets have been proceeded. Expecially, it is very important to develop a surface glaze having hydrophobicity through a sintering process above $1000^{\circ}C$ without an additional coating process and the degradation of mechanical properties. In this study, surface glaze with copper powder was applied to manufacture of ceramic tile. Contact angle of ceramic tile according to thickness of surface glaze layer was investigated after the conventional sintering process. The contact angle of the ceramic tile surface without the copper powder was shown to be $25.3^{\circ}$, which is close to hydrophilic surface. However, the contact angle was increased up to $109.8^{\circ}$ when the thickness of surface glaze with the copper powder was $150{\mu}m$. The excellent hydrophobic property of the surface glaze with copper powder was resulted from the cellular structure of copper particles on the glaze surface. In addition, the mechanical properties of the developed hydrophobic ceramic tiles such as bending strength, chemical resistance, abrasion resistance, and frost resistance were well maintained and meet the criteria of 'KS L 1001 Ceramic tile'.

건축용 내외장재로 사용되는 도자타일은 최근에 오염 방지 기능에 대한 시장의 수요에 따라, $TiO_2$ 코팅을 통한 친수성(hydrophilic property) 표면개발 연구와 더불어 표면에서 물방울의 흐름성을 향상시켜 오염물질을 제거하는 소수성(hydrophobic property) 표면을 갖는 도자타일에 대한 연구가 진행되고 있다. 특히 추가적인 코팅 공정 적용 없이 $1000^{\circ}C$ 이상의 소결 과정을 통해서 소수성을 갖으며, 기존 도자타일의 기계적 물성의 저하가 나타나지 않는 표면유약의 개발이 매우 중요하다. 본 연구에서는 상용화 도자타일의 표면유약에 조성에 구리 분말을 첨가하여 기존 소결 공정을 적용하고, 추가 코팅 공정 없이 소수성 도자타일을 제작하고 표면유약의 두께에 따른 접촉각 특성 변화를 관찰하였다. 구리 분말이 첨가되지 않은 도자타일의 표면 접촉각은 $25^{\circ}$로 친수성을 보이는 반면에 구리 분말이 첨가된 표면유약이 $150{\mu}m$ 두께인 경우에 접촉각이 $109^{\circ}$까지 증가하는 것을 확인하였다. 이와 같은 구리 분말이 첨가된 표면유약의 우수한 소수성 발현은 유약 표면에서 구리 입자의 세포 구조(cellular structure) 분포에 의한 것으로 확인되었다. 또한 개발된 소수성 도자타일의 기계적 물성(꺽임강도, 내화학성, 내마모성, 내동해성)은 기존 도자타일과 거의 동일하고 'KS L 1001 도자타일'의 기준을 만족하는 결과를 얻을 수 있었다.

Keywords

References

  1. H.S. Lim, "Development of nanostructured superhydrophobic surfaces", KIC News. 15 (2012) 1.
  2. T.L. Sun, L. Feng, X. Gao and L. Jiang, "Bioinspired surfaces with special wettability", Acc. Chem. Res. 38 (2005) 644. https://doi.org/10.1021/ar040224c
  3. S.R. Coulson, I. Woodward, J.P.S. Badyal, S.A. Brewer and C. Willis, "Super-repellent composite fluoropolymer surfaces", J. Phys. Chem. B 104 (2000) 8836. https://doi.org/10.1021/jp0000174
  4. W. Barthlott and C. Neinhuis, "Purity of the sacred louts, or escape from contamination in biological surfaces", Planta 202 (1997) 1. https://doi.org/10.1007/s004250050096
  5. X. Gao, and L. Jiang, "Water-repellent legs of water striders", Nature 432 (2004) 36. https://doi.org/10.1038/432036a
  6. T. Wagner, C. Neinhuis and W. Barthlott, "Wettability and contaminability of insect wings as a function of their surface sculptures", Acta Zool. 77 (1996) 213. https://doi.org/10.1111/j.1463-6395.1996.tb01265.x
  7. W. Lee, M.K. Jin, W.C. Yoo and J.K. Lee, "Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability", Langmuir 20 (2004) 7665. https://doi.org/10.1021/la049411+
  8. E. Martines, K. Seunarine, H. Morgan, N. Gadegaard, C.D.W. Wilkinson and M.O. Riehle, "Superhydrophobicity and superhydrophilicity of regular nanopatterns", Nano Lett. 5 (2005) 2097. https://doi.org/10.1021/nl051435t
  9. P. Roach, N.J. Shirtcliffe and M.I. Newton, "Progess in superhydrophobic surface development", Soft Matter 4 (2008) 224. https://doi.org/10.1039/B712575P
  10. R. Fagan, D.E. McCormack, S. Hinder and S.C. Pillai, "Improved high temperature stability of anatase $TiO_2$ photocatalysts by N, F, P co-doping", Mater. Des. 96 (2016) 44. https://doi.org/10.1016/j.matdes.2016.01.142
  11. M. Farahmandjou and P. Khalili, "Study of nano $SiO_2/TiO_2$ superhydrophobic self-cleaning surface produced by sol-gel", Australian J. Basic Appl. Sci. 7 (2013) 462.
  12. H.G. No, U.S. Kim and K.T. Hwang, "Evaluation of antimicrobial activity of red copper glaze", J. Kor. Soc. Color Stud. 33 (2019) 1.
  13. M. Ambrosi, S. Santoni, R. Giorgi, E. Fratini, N. Toccafondi and P. Baglioni, "High-performance and anti-stain coating for porcelain stoneware tiles based on nanostructured zirconium compounds", J. Colloid Interface Sci. 432 (2014) 117. https://doi.org/10.1016/j.jcis.2014.07.002
  14. J.J. Reinosa, J.J. Romero, P. Jaquotot, M.A. Bengochea and J.F. Fernandez, "Copper based hydrophobic ceramic nanocoating", J. Eur. Ceram. Soc. 32 (2012) 277. https://doi.org/10.1016/j.jeurceramsoc.2011.08.013
  15. T.N. Dinh, Y.Z. Yang, J.P. Tu, R.R. Nourgaliev and T.G. Theofanous, "Rayleigh-Benard natural convection heat transfer: pattern formation, complexity and predictability", In: Proceedings of ICAPP'04 (2004) Paper 4241.
  16. J.H.E. Cartwright, O. Piro and A.I. Villacampa, "Pattern formation in solutal convection: vermiculated rolls and isolated cells", Physica A 314 (2002) 291. https://doi.org/10.1016/S0378-4371(02)01080-4
  17. J.J. Reinosa, J.J. Romero, M.A. Rubia, A. Campo and J.F. Fernandez, "Inorganic hydrophobic coatings: Surfaces mimicking the nature", Ceram. Int. 39 (2013) 2489. https://doi.org/10.1016/j.ceramint.2012.09.007