DOI QR코드

DOI QR Code

A concise review of human brain methylome during aging and neurodegenerative diseases

  • Received : 2019.07.21
  • Published : 2019.10.31

Abstract

DNA methylation at CpG sites is an essential epigenetic mark that regulates gene expression during mammalian development and diseases. Methylome refers to the entire set of methylation modifications present in the whole genome. Over the last several years, an increasing number of reports on brain DNA methylome reported the association between aberrant methylation and the abnormalities in the expression of critical genes known to have critical roles during aging and neurodegenerative diseases. Consequently, the role of methylation in understanding neurodegenerative diseases has been under focus. This review outlines the current knowledge of the human brain DNA methylomes during aging and neurodegenerative diseases. We describe the differentially methylated genes from fetal stage to old age and their biological functions. Additionally, we summarize the key aspects and methylated genes identified from brain methylome studies on neurodegenerative diseases. The brain methylome studies could provide a basis for studying the functional aspects of neurodegenerative diseases.

Keywords

References

  1. Wyatt G (1951) Recognition and estimation of 5-methylcytosine in nucleic acids. Biochem J 48, 581 https://doi.org/10.1042/bj0480581
  2. Hotchkiss RD (1948) The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem 175, 315-332 https://doi.org/10.1016/S0021-9258(18)57261-6
  3. Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8, 1499-1504 https://doi.org/10.1093/nar/8.7.1499
  4. Illingworth RS, Gruenewald-Schneider U, Webb S et al (2010) Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet 6, e1001134 https://doi.org/10.1371/journal.pgen.1001134
  5. Ladd-Acosta C, Pevsner J, Sabunciyan S et al (2007) DNA methylation signatures within the human brain. Am J Hum Genet 81, 1304-1315 https://doi.org/10.1086/524110
  6. Siegmund KD, Connor CM, Campan M et al (2007) DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2, e895 https://doi.org/10.1371/journal.pone.0000895
  7. Boyes J and Bird A (1992) Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO J 11, 327-333 https://doi.org/10.1002/j.1460-2075.1992.tb05055.x
  8. Hsieh CL (1994) Dependence of transcriptional repression on CpG methylation density. Mol Cell Biol 14, 5487-5494 https://doi.org/10.1128/MCB.14.8.5487
  9. Laurent L, Wong E, Li G et al (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20, 320-331 https://doi.org/10.1101/gr.101907.109
  10. Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315 https://doi.org/10.1038/nature08514
  11. Rauch TA, Wu X, Zhong X, Riggs AD and Pfeifer GP (2009) A human B cell methylome at 100- base pair resolution. Proc Natl Acad Sci U S A 106, 671-678 https://doi.org/10.1073/pnas.0812399106
  12. Nan X, Ng HH, Johnson CA et al (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386 https://doi.org/10.1038/30764
  13. Domcke S, Bardet AF, Ginno PA, Hartl D, Burger L and Schubeler D (2015) Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528, 575 https://doi.org/10.1038/nature16462
  14. Gartler SM and Riggs AD (1983) Mammalian X-chromosome inactivation. Annu Rev Genet 17, 155-190 https://doi.org/10.1146/annurev.ge.17.120183.001103
  15. Reik W, Collick A, Norris ML, Barton SC and Surani MA (1987) Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328, 248 https://doi.org/10.1038/328248a0
  16. Swain JL, Stewart TA and Leder P (1987) Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell 50, 719-727 https://doi.org/10.1016/0092-8674(87)90330-8
  17. Day JJ and Sweatt JD (2010) DNA methylation and memory formation. Nat Neurosci 13, 1319 https://doi.org/10.1038/nn.2666
  18. Counts JL and Goodman JI (1995) Alterations in DNA methylation may play a variety of roles in carcinogenesis. Cell 83, 13-15 https://doi.org/10.1016/0092-8674(95)90228-7
  19. Jahner D, Stuhlmann H, Stewart CL et al (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298, 623 https://doi.org/10.1038/298623a0
  20. Walsh CP, Chaillet JR and Bestor TH (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20, 116 https://doi.org/10.1038/2413
  21. Hermann A, Gowher H and Jeltsch A (2004) Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61, 2571-2587 https://doi.org/10.1007/s00018-004-4201-1
  22. Okano M, Bell DW, Haber DA and Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257 https://doi.org/10.1016/S0092-8674(00)81656-6
  23. Gruenbaum Y, Cedar H and Razin A (1982) Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 295, 620 https://doi.org/10.1038/295620a0
  24. Guo JU, Su Y, Shin JH et al (2014) Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci 17, 215 https://doi.org/10.1038/nn.3607
  25. Feng J, Zhou Y, Campbell SL et al (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13, 423 https://doi.org/10.1038/nn.2514
  26. Veldic M, Caruncho H, Liu W et al (2004) DNAmethyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci U S A 101, 348-353 https://doi.org/10.1073/pnas.2637013100
  27. Kriaucionis S and Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929-930 https://doi.org/10.1126/science.1169786
  28. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930-935 https://doi.org/10.1126/science.1170116
  29. He YF, Li BZ, Li Z et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303-1307 https://doi.org/10.1126/science.1210944
  30. Ito S, Shen L, Dai Q et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300-1303 https://doi.org/10.1126/science.1210597
  31. Yu M, Hon GC, Szulwach KE et al (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368-1380 https://doi.org/10.1016/j.cell.2012.04.027
  32. Zhang L, Lu X, Lu J et al (2012) Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol 8, 328 https://doi.org/10.1038/nchembio.914
  33. Rai K, Huggins IJ, James SR, Karpf AR, Jones DA and Cairns BR (2008) DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135, 1201-1212 https://doi.org/10.1016/j.cell.2008.11.042
  34. Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY and Blau HM (2010) Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463, 1042 https://doi.org/10.1038/nature08752
  35. Bhutani N, Burns DM and Blau HM (2011) DNA demethylation dynamics. Cell 146, 866-872 https://doi.org/10.1016/j.cell.2011.08.042
  36. Santiago M, Antunes C, Guedes M, Sousa N and Marques CJ (2014) TET enzymes and DNA hydroxymethylation in neural development and function-how critical are they? Genomics 104, 334-340 https://doi.org/10.1016/j.ygeno.2014.08.018
  37. Ito S, D'alessio AC, Taranova OV, Hong K, Sowers LC and Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129 https://doi.org/10.1038/nature09303
  38. Dawlaty MM, Breiling A, Le T et al (2013) Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell 24, 310-323 https://doi.org/10.1016/j.devcel.2012.12.015
  39. Portela A and Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28, 1057 https://doi.org/10.1038/nbt.1685
  40. Heyward FD and Sweatt JD (2015) DNA methylation in memory formation: emerging insights. Neuroscientist 21, 475-489 https://doi.org/10.1177/1073858415579635
  41. Antequera F and Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 90, 11995-11999 https://doi.org/10.1073/pnas.90.24.11995
  42. Consortium IHGS (2001) Initial sequencing and analysis of the human genome. Nature 409, 860 https://doi.org/10.1038/35057062
  43. Ioshikhes IP and Zhang MQ (2000) Large-scale human promoter mapping using CpG islands. Nat Genet 26, 61 https://doi.org/10.1038/79189
  44. Saxonov S, Berg P and Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103, 1412-1417 https://doi.org/10.1073/pnas.0510310103
  45. Illingworth R, Kerr A, DeSousa D et al (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 6, e22 https://doi.org/10.1371/journal.pbio.0060022
  46. Numata S, Ye T, Hyde TM et al (2012) DNA methylation signatures in development and aging of the human prefrontal cortex. Am J Hum Genet 90, 260-272 https://doi.org/10.1016/j.ajhg.2011.12.020
  47. Hernandez DG, Nalls MA, Gibbs JR et al (2011) Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum Mol Genet 20, 1164-1172 https://doi.org/10.1093/hmg/ddq561
  48. Horvath S, Zhang Y, Langfelder P et al (2012) Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol 13, R97 https://doi.org/10.1186/gb-2012-13-10-r97
  49. Heyn H, Li N, Ferreira HJ et al (2012) Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A 109, 10522-10527 https://doi.org/10.1073/pnas.1120658109
  50. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14, 3156 https://doi.org/10.1186/gb-2013-14-10-r115
  51. Hannum G, Guinney J, Zhao L et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49, 359-367 https://doi.org/10.1016/j.molcel.2012.10.016
  52. Jung SE, Shin KJ and Lee HY (2017) DNA methylationbased age prediction from various tissues and body fluids. BMB Rep 50, 546-553 https://doi.org/10.5483/BMBRep.2017.50.11.175
  53. Day K, Waite LL, Thalacker-Mercer A et al (2013) Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol 14, R102 https://doi.org/10.1186/gb-2013-14-9-r102
  54. Levine ME, Lu AT, Quach A et al (2018) An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 10, 573 https://doi.org/10.18632/aging.101414
  55. Horvath S and Raj K (2018) DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 19, 371 https://doi.org/10.1038/s41576-018-0004-3
  56. Horvath S, Mah V, Lu AT et al (2015) The cerebellum ages slowly according to the epigenetic clock. Aging (Albany NY) 7, 294 https://doi.org/10.18632/aging.100742
  57. Levine ME, Lu AT, Bennett DA and Horvath S (2015) Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer's disease related cognitive functioning. Aging (Albany NY) 7, 1198 https://doi.org/10.18632/aging.100864
  58. Davies MN, Volta M, Pidsley R et al (2012) Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 13, R43 https://doi.org/10.1186/gb-2012-13-6-r43
  59. Spiers H, Hannon E, Schalkwyk LC et al (2015) Methylomic trajectories across human fetal brain development. Genome Res 25, 338-352 https://doi.org/10.1101/gr.180273.114
  60. Lister R, Mukamel EA, Nery JR et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 https://doi.org/10.1126/science.1237905
  61. Bakulski KM, Dolinoy DC, Sartor MA et al (2012) Genome-wide DNA methylation differences between late-onset Alzheimer's disease and cognitively normal controls in human frontal cortex. J Alzheimers Dis 29, 571-588 https://doi.org/10.3233/JAD-2012-111223
  62. Rao J, Keleshian V, Klein S and Rapoport S (2012) Epigenetic modifications in frontal cortex from Alzheimer's disease and bipolar disorder patients. Transl Psychiatry 2, e132 https://doi.org/10.1038/tp.2012.55
  63. Kaut O, Schmitt I and Wullner U (2012) Genome-scale methylation analysis of Parkinson's disease patients' brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics 13, 87-91 https://doi.org/10.1007/s10048-011-0308-3
  64. Sanchez-Mut JV, Aso E, Panayotis N et al (2013) DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease. Brain 136, 3018-3027 https://doi.org/10.1093/brain/awt237
  65. Sanchez-Mut JV, Aso E, Heyn H et al (2014) Promoter hypermethylation of the phosphatase DUSP22 mediates PKA-dependent TAU phosphorylation and CREB activation in Alzheimer's disease. Hippocampus 24, 363-368 https://doi.org/10.1002/hipo.22245
  66. Yu L, Chibnik LB, Srivastava GP et al (2015) Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA Neurol 72, 15-24 https://doi.org/10.1001/jamaneurol.2014.3049
  67. De Jager PL, Srivastava G, Lunnon K et al (2014) Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 17, 1156 https://doi.org/10.1038/nn.3786
  68. Lunnon K, Smith R, Hannon E et al (2014) Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nat Neurosci 17, 1164 https://doi.org/10.1038/nn.3782
  69. Bae JR and Kim SH (2017) Synapses in neurodegenerative diseases. BMB Rep 50, 237-246 https://doi.org/10.5483/BMBRep.2017.50.5.038
  70. Delgado-Morales R and Esteller M (2017) Opening up the DNA methylome of dementia. Mol Psychiatry 22, 485 https://doi.org/10.1038/mp.2016.242
  71. Giri M, Zhang M and Lu Y (2016) Genes associated with Alzheimer's disease: an overview and current status. Clin Interv Aging 11, 665 https://doi.org/10.2147/CIA.S105769
  72. Cho S, Ahn E, An H et al (2017) Association of miR-938G> A polymorphisms with primary ovarian insufficiency (POI)-related gene expression. Int J Mol Sci 18, 1255 https://doi.org/10.3390/ijms18061255
  73. Lord J and Cruchaga C (2014) The epigenetic landscape of Alzheimer's disease. Nat Neurosci 17, 1138 https://doi.org/10.1038/nn.3792
  74. Sanchez-Mut JV, Heyn H, Vidal E et al (2016) Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns. Transl Psychiatry 6, e718 https://doi.org/10.1038/tp.2015.214
  75. Galpern WR and Lang AE (2006) Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann Neurol 59, 449-458 https://doi.org/10.1002/ana.20819
  76. Lippa CF, Schmidt ML, Lee VMY and Trojanowski JQ (1999) Antibodies to ${\alpha}$-synuclein detect Lewy bodies in many Down's syndrome brains with Alzheimer's disease. Ann Neurol 45, 353-357 https://doi.org/10.1002/1531-8249(199903)45:3<353::AID-ANA11>3.0.CO;2-4
  77. van Eijk KR, de Jong S, Boks MP et al (2012) Genetic analysis of DNA methylation and gene expression levels in whole blood of healthy human subjects. BMC Genomics 13, 636 https://doi.org/10.1186/1471-2164-13-636
  78. Gibbs JR, van der Brug MP, Hernandez DG et al (2010) Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet 6, e1000952 https://doi.org/10.1371/journal.pgen.1000952
  79. Chibnik LB, Yu L, Eaton ML et al (2015) Alzheimer's loci: epigenetic associations and interaction with genetic factors. Ann Clin Transl Neurol 2, 636-647 https://doi.org/10.1002/acn3.201
  80. Kalia LV and Lang AE (2015) Parkinson's disease. The Lancet 386, 896-912 https://doi.org/10.1016/S0140-6736(14)61393-3
  81. Trinh J and Farrer M (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9, 445 https://doi.org/10.1038/nrneurol.2013.132
  82. Consortium IPsDG and 2 WTCCC (2011) A two-stage meta-analysis identifies several new loci for Parkinson's disease. PLoS Genet 7, e1002142 https://doi.org/10.1371/journal.pgen.1002142
  83. Masliah E, Dumaop W, Galasko D and Desplats P (2013) Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics 8, 1030-1038 https://doi.org/10.4161/epi.25865
  84. Nalls MA, Pankratz N, Lill CM et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genet 46, 989 https://doi.org/10.1038/ng.3043
  85. Belzil VV, Katzman RB and Petrucelli L (2016) ALS and FTD: an epigenetic perspective. Acta Neuropathol 132, 487-502 https://doi.org/10.1007/s00401-016-1587-4
  86. Ling SC, Polymenidou M and Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416-438 https://doi.org/10.1016/j.neuron.2013.07.033
  87. Liu EY, Russ J, Wu K et al (2014) C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol 128, 525-541 https://doi.org/10.1007/s00401-014-1286-y
  88. Russ J, Liu EY, Wu K et al (2015) Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathol 129, 39-52 https://doi.org/10.1007/s00401-014-1365-0
  89. Xi Z, Rainero I, Rubino E et al (2014) Hypermethylation of the CpG-island near the C9orf72 G4C2-repeat expansion in FTLD patients. Hum Mol Genet 23, 5630-5637 https://doi.org/10.1093/hmg/ddu279
  90. McColgan P and Tabrizi SJ (2018) Huntington's disease: a clinical review. Eur J Neurol 25, 24-34 https://doi.org/10.1111/ene.13413
  91. Bates GP, Dorsey R, Gusella JF et al (2015) Huntington disease. Nat Rev Dis Primers 1, 15005 https://doi.org/10.1038/nrdp.2015.5
  92. De Souza RA, Islam SA, McEwen LM et al (2016) DNA methylation profiling in human Huntington's disease brain. Hum Mol Genet 25, 2013-2030 https://doi.org/10.1093/hmg/ddw076
  93. Villar-Menendez I, Blanch M, Tyebji S et al (2013) Increased 5-methylcytosine and decreased 5-hydroxymethylcytosine levels are associated with reduced striatal A 2A R levels in Huntington's disease. Neuromolecular Med 15, 295-309 https://doi.org/10.1007/s12017-013-8219-0
  94. Faguy K (2016) Multiple sclerosis: An update. Radiol Technol 87, 529-550
  95. Lindberg RL, De Groot CJ, Certa U et al (2004) Multiple sclerosis as a generalized CNS disease-comparative microarray analysis of normal appearing white matter and lesions in secondary progressive MS. J Neuroimmunol 152, 154-167 https://doi.org/10.1016/j.jneuroim.2004.03.011
  96. Pedre X, Mastronardi F, Bruck W, Lopez-Rodas G, Kuhlmann T and Casaccia P (2011) Changed histone acetylation patterns in normal-appearing white matter and early multiple sclerosis lesions. J Neurosci 31, 3435-3445 https://doi.org/10.1523/JNEUROSCI.4507-10.2011
  97. Mastronardi FG, Wood DD, Mei J et al (2006) Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. J Neurosci 26, 11387-11396 https://doi.org/10.1523/JNEUROSCI.3349-06.2006
  98. Huynh JL, Garg P, Thin TH et al (2014) Epigenome-wide differences in pathology-free regions of multiple sclerosis-affected brains. Nat Neurosci 17, 121 https://doi.org/10.1038/nn.3588