DOI QR코드

DOI QR Code

Development and application of hydro-economic optimal water allocation and management model

수자원-경제 통합 물 배분 최적화 모형의 개발 및 적용

  • Jeong, Gimoon (Department of Civil Engineering, Kyung Hee University) ;
  • Choi, Sijung (Department of Land, Water and Environment Research, Korea Institute of Civil engineering and building Technology) ;
  • Kang, Doosun (Department of Civil Engineering, Kyung Hee University)
  • 정기문 (경희대학교 사회기반시스템공학과) ;
  • 최시중 (한국건설기술연구원 국토보전연구본부) ;
  • 강두선 (경희대학교 사회기반시스템공학과)
  • Received : 2019.08.23
  • Accepted : 2019.09.27
  • Published : 2019.10.31

Abstract

The optimal water allocation pursues a reliable and economic supply of water resources to meet various interests in socio-economic-environmental aspects. The global water shortage has intensified due to climate change and population growth with limited water resources. Thus, the water management scheme has shifted to improve water use efficiency by proper demand management and water allocation planning. Here, a hydro-economic water allocation model, called WAMM (Water Allocation and Management Model) is introduced. The WAMM is equipped with an improved linear programming algorithm for optimal water allocation and estimates economic value of water supply as an objective of water

최적화된 물 공급 계획은 물을 둘러싼 이해관계와 사회-경제-환경적 요구사항을 충족시킬 수 있는 합리적이고 경제적인 수자원의 배분 및 활용 방안을 의미한다. 하지만, 전 세계적으로 기후변화와 인구증가 등의 다양한 요인에 의해 물 부족 현상이 심화되고 있다. 최근의 수자원 공급 계획은 수원의 다변화와 더불어 수요 관리 및 물이용 효율을 높이는 방향으로 변화하고 있다. 따라서 한정된 수자원의 이용 효율을 높이고, 물 부족에 따른 분쟁을 해소하기 위한 공학적 도구로써 다양한 물 배분 모형이 개발되어 활용되고 있다. 본 연구에서는 수자원의 용도에 따른 경제적 가치와 물공급 안정성을 기반으로 물 배분 계획을 수립하는 수자원-경제 통합 물 배분 모형을 개발하였다. 개발 모형은 기존 물 배분 모형의 최적화 알고리즘을 개선하고, 목적함수를 다양화함으로써 효율적인 물 배분을 위한 의사결정도구로 활용될 수 있을 것으로 기대한다.

Keywords

References

  1. Andreu, J., Capilla, J., and Sanchis, E. (1991). "AQUATOOL: A computer-assisted support system for water resources research management including conjunctive use." In Decision Support Systems, Vol. G26, pp. 333-355.
  2. Choi, S., Lee, D., Moon, J., and Kang, S. (2010). "Application of integrated water resources evaluation and planning system (K-WEAP)." Journal of Korea Water Resources Association, KWRA, Vol. 43, No. 7, pp. 625-633. https://doi.org/10.3741/JKWRA.2010.43.7.625
  3. Diaz, G. E., Brown, T. C., and Sveinsson, O. (1997). AQUARIUS: A modeling system for river basin water allocation. General Technical Report RM-GTR-299. U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO.
  4. Howitt, R. E., Lund, J. R., Kirby, K. W., Jenkins, M. W., Draper, A. J., Grimes, P. M., Ward, K. B., Davis, M. D., Newlin, B. D., Van Lienden, B. J., Cordua, J. L., and Msangi, S. M. (1999). Integrated economic-engineering analysis of california's future water supply. Project completion report, Department of Civil and Environmental Engineering, University of California, Davis.
  5. Hwang, S., Um, M., and Kim, T. (1999). "The valuation of the reliability of municipal water supply using contingent valuation method in Korea." Environmental and Resource Economics Review, Vol. 8, No. 1, pp. 109-126.
  6. K-water (2008). Improving measures of feasibility study for water resources projects. Research Report, K-water.
  7. Lim, J., and Lee, M. (2001). "Marginal benefit-cost analysis of irrigation water in rice production." Korean Journal of Agricultural Science, Chungnam National University, Korea, Vol. 28, No. 2, pp. 132-146.
  8. Ministry of Land, Infrastructure and Transport (MOLIT) (2018). Nature for water, Republic of Korea.
  9. Ministry of Land, Transport and Maritime Affairs (MLTM) (2006). National water resources plan (2006-2020), Republiec of Korea.
  10. Ministry of Land, Transport and Maritime Affairs (MLTM) (2011). National water resources plan (2011-2020), Republiec of Korea.
  11. MyWater (2019). K water, accessed 16 August 2019, .
  12. Newlin, B. D., Jenkins, M. W., Lund, J. R., and Howitt, R. E. (2002). "Southern california water markets: potential and limitations." Journal of Water Resources Planning and Management, Vol. 128, No. 1, pp. 21-32. https://doi.org/10.1061/(ASCE)0733-9496(2002)128:1(21)
  13. Park, S., Ryoo, K., Kim, J., and Kim, B. (2014). "The case study of economic value assessment of spring rainfall in the aspect of water resources." Journal of Environmental Science International, Vol. 23, No. 2, pp. 193-205. https://doi.org/10.5322/JESI.2014.23.2.193
  14. Pulido-Velazquez, M., Jenkins, M. W., and Lund, J. R. (2004). "Economic values for conjunctive use and water banking in southern California." Water Resources Research, Vol. 40, No. 3.
  15. Raskin, P., Hansen, E., Zhu, Z., and Stavisky, D. (1992). "Simulation of water supply and demand in the Aral Sea Basin." Water International, Vol. 17, No. 2, pp. 55-67. https://doi.org/10.1080/02508069208686127
  16. Shafer, J., and Labadie, J. (1978). Synthesis and calibration of a river basin water management model. Completion Report No. 89, Colorado Water Resources Research Institute, Colorado State University, Ft. Collins.
  17. Strzepek, K. M. (1981). MITSIM-2 a simulation model for planning and operational analysis of river basin systems. WP-81-124.
  18. Strzepek, K. M., and Lenton, R. L. (1978). Analysis of multipurpose river basin systems: Guidelines for simulation modelling. Technical Report No. 236 Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
  19. Yates, D., Sieber, J., Purkey, D., and Huber-Lee, A. (2005). "WEAP21-A demand-, priority-, and preference-driven water planning model: part 1: model characteristics." Water International, Vol. 30, No. 4, pp. 487-500. https://doi.org/10.1080/02508060508691893
  20. Zagona, E. A., Fulp, T. J., Shane, R., Magee, T., and Goranflo, H. M. (2001). "Riverware: A generalized tool for complex reservoir system modeling." Journal of the American Water Resources Association, Vol. 37, No. 4, pp. 913-929. https://doi.org/10.1111/j.1752-1688.2001.tb05522.x