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[Abstract]

In this paper, we study a polynomially solvable case of the inverse interval graph coloring problem. 

Given an interval graph associated with a specific interval system, the inverse interval graph coloring 

problem is defined with the assumption that there is no proper  -coloring for the given interval graph, 

where  is a fixed integer. The problem is to modify the system of intervals associated with the 

given interval graph by shifting some of the intervals in such a way that the resulting interval graph 

becomes  -colorable and the total modification is minimum with respect to a certain norm.  In this 

paper, we focus on the case    where all intervals associated with the interval graph have length 1 

or 2, and interval displacement is only allowed to the righthand side with respect to its original 

position. To solve this problem in polynomial time, we propose a two-phase algorithm which consists 

of the sorting and First Fit procedure.
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[요   약]

이 논문에서는 인터벌 그래프 컬러링 역문제 중 다항시간 안에 풀이 가능한 경우에 대해 연구

한다. 인터벌 그래프의 컬러링 역문제는 주어진 인터벌 그래프를 개의 서로 다른 색깔로 색칠

할 수 없는 경우를 가정하며, 다음과 같이 정의된다. 주어진 인터벌 그래프가 개의 색깔을 이용

해서 모두 칠해질 수 있도록 인터벌 그래프와 연관되어 있는 인터벌 시스템을 최소한으로 수정하

는 문제이다. 인터벌 시스템에서 두 인터벌이 부분적으로라도 서로 겹쳐있는 구간이 있을 경우 

두 인터벌에 해당하는 노드들이 엣지로 연결되어 있음을 의미하고, 따라서 이 경우에는 해당 노

드들을 같은 색깔을 이용해 칠할 수 없다. 따라서 겹쳐져 있는 인터벌들을 이동시켜 해당 그래프

의 chromatic number를 바꿀 수 있다. 본 논문에서는 인터벌의 길이가 모두 1 또는 2이며, 인터벌

의 이동이 본래 위치 대비 오른쪽으로만 가능하다는 제한이 있는 경우에 대해 집중 탐구한다. 이 

문제를 해결하는 다항시간 알고리즘으로 sorting과 선입선출 방식을 사용하는 2단계 알고리즘을 

제안한다. 
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I. Introduction

In the minimum graph coloring problem[1], we 

are given a graph   , and we need to 

decide whether the given graph is -colorable for 

a fixed positive integer  .  A graph    is 

said to be -colorable if any pair of adjacent 

nodes (connected by an edge) can be colored with 

different colors[1]. The graph coloring has many 

applications in the context of university course 

timetabling and examination timetabling[2-4]. Given 

a list of courses (or examinations), any pair of 

courses should not be scheduled on a same 

time-slot if there is at least one student who wants 

to attend both courses. It is well-known that the 

minimum graph coloring problem and the 

university course/examination timetabling problem 

are NP-complete, and it is also hard to find an 

optimal solution for their optimization problems[1].

In the inverse optimization problem[5], we are 

given a feasible solution for an optimization 

problem, and we need to modify as little as possible 

the instance of the given problem so that the 

prescribed feasible solution becomes optimal in the 

modified instance. For many combinatorial 

optimization problems, its inverse problem has 

been studied by many researchers[5-10]. In [9], the 

authors studied the complexity status of the inverse 

graph coloring problem in interval graphs.

Given an interval graph     associated with 

 intervals and a positive integer , the inverse 

interval graph coloring problem [9] is defined as the 

problem of modifying the system of the intervals by 

making parallel translation of intervals in such a way 

that the chromatic number of the resulting interval 

graph does not exceed  and the total deviation 

between the original and new interval system is 

minimum under the -norm.

In [9], the authors consider the inverse interval 

graph coloring problem with   , called the 

inverse booking problem, in the context of hotel 

reservation. The inverse booking problem and its 

variant are shown to be NP-hard in the strong 

sense even in the case    and that no 

polynomial time approximation algorithm can 

guarantee an approximation ratio of 

     , where  denotes the number of 

nodes of the given interval graph[9]. 

In this paper, we focus on the case where the 

lengths of the intervals associated with the given 

interval graph are all restricted to 1 or 2, and 

interval displacement is only allowed to the 

righthand side with respect to its original position. 

We call this problem the inverse booking problem 

with release dates and denote it by  .

The formal definition of the problem 

is as follows: given a list of  intervals 

      of length ∈ ∈⋯, and a 

positive integer  ≥  , the task is to find the new 

left endpoint ′ of each interval such that  ≤ ′

and the interval graph associated with new 

intervals ′  ′′   ∈⋯ can be 

properly colored with K different colors or less. 

The objective is to minimize the deviation 


  



′  . All numerical data are assumed to be 

non-negative integers. 

Using the terminology of job scheduling in the 

literature [11-14], the problem with    can be 

referred to as the minimum tardiness single 

machine scheduling problem with arbitrary release 

dates. We  denote this problem by  .

It is known that the generalized problem, , 

without restriction on interval lengths is NP-hard[9], 

while  with equal length intervals is 

polynomially solvable[14]. In this paper, we propose 

a polynomial time algorithm for solving  .

This paper is organized as follows: In Section 2, 

we discuss some preliminary results on inverse 

interval graph coloring. In Section 3 we describe a 

polynomial time algorithm for solving  . We 

prove in Section 4 the optimality of our algorithm. 

We then conclude the paper.
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II. Preliminaries

Here we provide some preliminary remarks on 

interval translations. Since the objective function is 

measured by the sum of interval translations, the 

following lemmas will be useful later on.

Given an interval graph, we denote the related 

interval system by a position vector   ⋯ , 

each component  of which is the left endpoint of 

an interval       ⋯. Without loss of 

generality, we assume that  ≤⋯≤  . By 

definition of , the task is to determine a new 

position vector for intervals in which all intervals 

can be placed without overlapping with others. A 

position vector is said to be optimal if the deviation 

between the original and new interval position 

vector is minimum.

Lemma 1. Assume that all intervals have equal 

length. Then, there is at least one optimal position 

vector for  preserving the original interval 

order.

Proof. Let   ⋯ be the initial position 

vector of the intervals      ⋯ such 

that  ≤⋯≤  . We assume that all intervals 

have equal length, i.e.,    for any ∈⋯. 

We assume an optimal position vector 

 ⋯  . Let us define a set of pairs 

 such that  ≤  and  ≤  , meaning 

that interval   , originally placed before 

interval   , is placed in after   . 

Suppose that   . Let    and

   be two intervals such that ∈

with   min { |∃ ∈ }, and    min

{ |∈  } for a fixed . As the interval 

translations are only allowed to the right-hand 

side, by definition of  , we have 

 ≤  ≤   ≤  .

Let us now consider another position vector ′

obtained from  by exchanging two intervals 

   and   . All the other intervals’ 

positions remaining the same, this interval 

exchange does not make any additional translation 

cost. In fact, the translation cost      of 

induced by the intervals    and    is 

equal to the related cost ′   of ′:

                    

         

 ′   ′   

 ′   

It means that ′ is at least as good as . So, by 

exchanging every pair of intervals in   , we can 

reposition all of the intervals according to the 

original interval order. Since    , it 

requires  -time to find an optimal position 

vector preserving the initial order of intervals.

■

Proposition 1.  with equal length intervals 

can be solved in  time.

Proof. Denoting by  ⋯ an optimal 

solution preserving the order of interval’s left 

endpoint (see Lemma 1), it is straightforward to 

show that we have    and    max

{      }. Thus,  can be computed using 

this relation from   to   .

■

In the sequel, we assume that every interval has 

a length of 1 or 2 and that interval translations are 

only allowed to the righthand side. One can 

observe the following:

Observation 1. Assume two intervals intersecting 

each other. If they have different starting points, 

then it is always less expensive to move the interval 

with larger starting point value in order to legally 

place both intervals on a single line.

Observation 2. If two intervals of length 1 and 2 

start at the same point, then it is always less 

expensive to move the longer one in order to 

legally place both intervals on a single line.
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Consider the case where an interval of length 2 

intersects an interval block, composed of several 

intervals of length 1 or 2.

Lemma 2. Let  be an interval block, composed 

of some intervals of length 1 or 2. Let   

be an interval of length 2 intersecting . We 

suppose that there is an empty space of width at 

least 2 between the block  and an interval 

following  (if exists). Then, in order to legally 

position all intervals, moving some intervals of  is 

at least as expensive as moving the interval 

   (without moving  ) to the end of .

Proof. Let us compare the following two 

solutions. In Solution 1, we shift interval   

(without moving any interval of ) to the end of  . 

In Solution 2, we split  into two parts (

finishing at  and  starting at ) and shift the 

second part  by distance of 2 to make a space 

for the interval   . Assume that 

contains  intervals; the length   of  is 

such that  ≤   ≤ . Solution 2 yields the 

translation cost of  while Solution 1 yields the 

cost of  . Two solutions have the same cost if 

 is composed of  intervals of length 2.

■

Lemma 3. Let  be an interval block, composed 

of intervals of length 1 or 2. Let   be an 

interval of length 2 intersecting . If  is followed 

by another

interval block ′ with distance at least 1, then it 

is always less expensive to shift ′(if necessary) 

and insert    between L and ′ than to 

shift    to the end of the second block ′.

Proof. Let  and ′ be the number of intervals 

contained in  and ′, and  and ′ the 

length of  and ′, respectively. Clearly,  ≤ 

and ′≤ ′. If there is an empty space of width 

2 (or more) between  and ′, then due to Lemma 

1 it is optimal to place    at the end of  . 

Suppose now that the width of an empty space 

between  and ′ is equal to 1. In this case, in 

order to put    between  and ′, we have 

to push ′ to the right by distance 1. However, 

since there is always an empty space of width at 

least 1 between any two interval blocks, the 

translation of ′ does not cause any overlap with 

its following block, say ′′. So, the related 

translation cost is equal to  ′. On the other 

hand, it costs  ′  to shift   

to the end of ′. Since ′ ′ , inserting 

   between and ′ is preferred to placing 

   at the end of ′.

■

III. A polynomial-time algorithm solving 



An instance of   is given by  intervals 

of length 1 and  intervals of length 2. Let  

{    ≤  ≤  } and  

{      ≤  ≤    } be the set of 

intervals of length 1 and 2, respectively. We 

assume that the endpoints of every interval have 

integer values, and the intervals of  and 

are respectively sorted in non decreasing order of 

their left endpoint values;

 ≤⋯≤  ≤⋯ 
a n d 

   ≤⋯≤  ≤⋯  .

Input:   {    ≤  ≤  } and  

{      ≤  ≤    }, each sorted in 

nondecreasing order of their left endpoint values, and 

a position vector   ⋯


 ⋯ .

Output: an optimal position vector  .

Algorithm 1. A Greedy Algorithm For Solving 
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1. Find an optimal position for ; 

we denote by     ⋯
 the 

sub-instance of  restricted to the set  of 

intervals of length 1, and by   ′⋯′


an optimal solution for   such that 

′ ≤⋯≤ ′
.

Step 1.

2. Define a position vector                     

    ⋯


 ⋯  such that 

   ′ for   ⋯ and     for 

    ⋯. The first  components of 

indicate the optimal positions of the intervals of 

 and the other  components indicate the 

initial positions of intervals of .

1.

2. 3. For each interval   ∈ do

3.

4. 4. Put    in the nearest blank on its 

right side (if necessary, push the next 

interval block by distance 1);

5.

6. 5. Renew the position vector .

7.

8. 6. End For

9.

10. 7. Return  .

Step 2. First Fit

Let us denote by   ⋯


 ⋯  the 

initial position vector of the given intervals; the 

first  components indicate the initial position of 

intervals of length 1 and the rest concern the initial 

position of intervals of length 2. In the sequel, an 

instance of   will be presented by means of 

this position vector . Then,  can be seen 

as the problem of finding a new interval position 

vector  ⋯


 ⋯  for which 

 all intervals can be legally positioned on a same 

line, i.e., without intersecting any other intervals, 

 ∀∈⋯  ≤  and  the total cost 

of translations 
  



    is minimum.

We propose a greedy algorithm for solving 

 . Our algorithm is implemented in two 

steps. At the first step, we restrict our attention to 

the set  of intervals of length 1. Due to 

Proposition 1 and Lemma 1, one can find in 

time a minimum cost legal position assignment for 

 preserving the initial interval order.

Note that once all the intervals of length 1 are 

optimally distributed on the line, we obtain a finite 

number of interval blocks; we number them in 

nondecreasing order of their starting point values. 

These blocks generate a finite number of gaps 

(empty spaces) between blocks of consecutive 

indices. We call them blanks. Since the endpoints 

of every interval are integers, each blank has an 

integral size larger than 1.

At the second step, we are given  intervals of 

length 2 to be positioned on the line already loaded 

by the intervals of length 1. Using the procedure 

First Fit, we determine the new position for each 

interval of . Recall that the intervals of 

are sorted in nondecreasing order of their left 

endpoint values. The procedure First Fit will be 

executed following this order until every interval of 

 is legally positioned, i.e., without intersecting 

any other intervals. The complexity of the proposed 

algorithm is of order .

IV. The Proof for Optimality

Given an instance   ⋯


 ⋯  of 

 , we denote by     ⋯
 the 

sub-instance of I restricted to the interval set 

of length 1. Let   ′⋯′
 be an optimal 

solution for    such that ′ ≤⋯≤ ′
(the 

existence of  is due to Lemma 1). We call  the 

intermediate solution of   . Then, one can 
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consider another problem to find an optimal 

assignment of the intervals of  to the line 

already loaded by the intervals of . An instance 

of this problem can be expressed by the following 

position vector  ′⋯′


 ⋯  (of 

dimension      ); the first  components

indicate the optimal positions for  found at 

the first step, and the other  components 

indicate the initial positions for . The objective 

is to find a new position vector for which all the 

intervals of ∪ can be legally positioned on 

the same line and the total translation is minimum.

We first show that First Fit solves this problem 

efficiently.

Lemma 4. The procedure First Fit is optimal for 

the instance  .

Proof. This result immediately follows from 

Lemma 1, as the procedure First Fit respects this 

lemma.

■

Let  ⋯


 ⋯  be an 

optimal solution for the whole instance  such that 

∀  ⋯,  ≤   and  ≤⋯≤ 
and 


  ≤⋯≤  (such an optimal position vector 

exists due to Lemma 1). The sub-vector    of 

restricted to  indicates the position of the 

intervals of  in the final solution . Below, we 

show that there exists an optimal solution of 

  in which every interval of length 1 is 

located on the righthand side with respect to its 

position in the intermediate solution, .

For any two vectors  and  of same dimension, 

we say  ≤  if the component values of  are, 

component by component, smaller than those of .

Lemma 5. There exists an optimal position vector 

 such that  ≤     ), i.e., 

∀  ⋯ ′ ≤ .

Proof. Suppose that there are some intervals 

     ⋯, such that   ′ where 

′ and  respectively denote the left endpoint of 

the interval    in the intermediate solution, 

, and the optimal solution, I. Let    be the 

one having the smallest index among such 

intervals: ∀ ≤  ′ ≤   and    ′. In , the 

interval    is placed at the position ′ . It 

means that all positions before  are already 

taken by some intervals of smaller index than . 

Otherwise, one can reduce the translation cost 

associated with  by placing interval   

before the position ′ , and this contradicts the 

fact that  is optimal for    . Since    ′, 

there is in  an interval  with   , placed at the 

position   , i.e., ′     . Besides, since 

  , we have: ′   ≤  . Let us now 

exchange in     the components    and 

   , i.e., we assign the interval    to 

the position  and    to the position . 

This exchange does not yield any extra cost. So, by 

repeating such exchanges, we can construct an 

optimal solution  such that ∀  ⋯ , 

′ ≤  .

■

Lemma 5 implies that every optimal solution for I 

(the whole instance of  can be constructed 

from an optimal solution for the sub-instance    . 

Let us now show that Algorithm 1 optimally solves 

 .

Proposition 2. Algorithm 1 optimally solves 

 in time .

Proof. Given an instance , let us denote by 

the optimal solution value for . Then, the solution 

value returned by Algorithm 1 is equal to 

     . To prove the optimality of 

Algorithm 1, we show that       . It 
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is straightforward to see that 

 ≤    . In fact,  is a 

minimization problem and Algorithm 1 returns a 

feasible solution for it.

We now show that  ≥      . Due to 

Lemma 5, one can construct an optimal solution 

for  from an optimal solution   ′⋯′
 for 

   . So, the optimal solution value of  can 

be expressed as follows:        where 

is the translation cost occurred when positioning 

the intervals of length 2. Since the obtained 

solution is feasible for  ≥ , we have: 

 ≥    .

■

V. Conclusion

In this paper, we have studied the inverse 

booking problem with release dates, which is an 

interesting variant of the inverse interval graph 

coloring problem where each interval has length 1 

or 2, and the translation of intervals is only allowed 

to the righthand side. We proposed a polynomial 

time algorithm for solving this problem and proved 

its optimality. This algorithm can be very useful for 

solving the university course timetabling problem, 

because many university offers the lectures of 1 

and 2 hours for the courses of 3 credit. However, 

our algorithm does not work for the case where 

interval lengths are either 1 or  ≥  . It will be 

interesting to investigate the computational 

complexity of  with another restriction on 

interval lengths. It also remains as a future 

research to devise an efficient algorithm that can 

solve   for a fixed constant  ≥ .
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