
JKSCI
한국컴퓨터정보학회논문지

Journal of The Korea Society of Computer and Information

Vol. 24 No. 10, pp. 57-64, October 2019

https://doi.org/10.9708/jksci.2019.24.10.057

Notes On Inverse Interval Graph Coloring Problems

1)Yerim Chung*, Hak-Jin Kim*

*Assistant Professor, Yonsei School of Business, Yonsei University, Seoul, Korea

*Professor, Yonsei School of Business, Yonsei University, Seoul, Korea

[Abstract]

In this paper, we study a polynomially solvable case of the inverse interval graph coloring problem.

Given an interval graph associated with a specific interval system, the inverse interval graph coloring

problem is defined with the assumption that there is no proper  -coloring for the given interval graph,

where  is a fixed integer. The problem is to modify the system of intervals associated with the

given interval graph by shifting some of the intervals in such a way that the resulting interval graph

becomes  -colorable and the total modification is minimum with respect to a certain norm. In this

paper, we focus on the case    where all intervals associated with the interval graph have length 1

or 2, and interval displacement is only allowed to the righthand side with respect to its original

position. To solve this problem in polynomial time, we propose a two-phase algorithm which consists

of the sorting and First Fit procedure.

▸Key words: Inverse Optimization, Graph Coloring, Interval Graph, Algorithm, Scheduling

[요 약]

이 논문에서는 인터벌 그래프 컬러링 역문제 중 다항시간 안에 풀이 가능한 경우에 대해 연구

한다. 인터벌 그래프의 컬러링 역문제는 주어진 인터벌 그래프를 개의 서로 다른 색깔로 색칠

할 수 없는 경우를 가정하며, 다음과 같이 정의된다. 주어진 인터벌 그래프가 개의 색깔을 이용

해서 모두 칠해질 수 있도록 인터벌 그래프와 연관되어 있는 인터벌 시스템을 최소한으로 수정하

는 문제이다. 인터벌 시스템에서 두 인터벌이 부분적으로라도 서로 겹쳐있는 구간이 있을 경우

두 인터벌에 해당하는 노드들이 엣지로 연결되어 있음을 의미하고, 따라서 이 경우에는 해당 노

드들을 같은 색깔을 이용해 칠할 수 없다. 따라서 겹쳐져 있는 인터벌들을 이동시켜 해당 그래프

의 chromatic number를 바꿀 수 있다. 본 논문에서는 인터벌의 길이가 모두 1 또는 2이며, 인터벌

의 이동이 본래 위치 대비 오른쪽으로만 가능하다는 제한이 있는 경우에 대해 집중 탐구한다. 이

문제를 해결하는 다항시간 알고리즘으로 sorting과 선입선출 방식을 사용하는 2단계 알고리즘을

제안한다.

▸주제어: 역최적화, 그래프 컬러링, 인터벌 그래프, 알고리즘, 스케줄링

∙First Author: Yerim Chung, Corresponding Author: Hak-Jin Kim
 *Yerim Chung (yerimchung@yonsei.ac.kr), School of Business, Yonsei University
 *Hak-Jin Kim (hakjin@yonsei.ac.kr), School of Business, Yonsei University
∙Received: 2019. 08. 27, Revised: 2019. 09. 25, Accepted: 2019. 09. 30.

Copyright ⓒ 2019 The Korea Society of Computer and Information
 http://www.ksci.re.kr pISSN:1598-849X | eISSN:2383-9945

58 Journal of The Korea Society of Computer and Information

I. Introduction

In the minimum graph coloring problem[1], we

are given a graph   , and we need to

decide whether the given graph is -colorable for

a fixed positive integer  . A graph    is

said to be -colorable if any pair of adjacent

nodes (connected by an edge) can be colored with

different colors[1]. The graph coloring has many

applications in the context of university course

timetabling and examination timetabling[2-4]. Given

a list of courses (or examinations), any pair of

courses should not be scheduled on a same

time-slot if there is at least one student who wants

to attend both courses. It is well-known that the

minimum graph coloring problem and the

university course/examination timetabling problem

are NP-complete, and it is also hard to find an

optimal solution for their optimization problems[1].

In the inverse optimization problem[5], we are

given a feasible solution for an optimization

problem, and we need to modify as little as possible

the instance of the given problem so that the

prescribed feasible solution becomes optimal in the

modified instance. For many combinatorial

optimization problems, its inverse problem has

been studied by many researchers[5-10]. In [9], the

authors studied the complexity status of the inverse

graph coloring problem in interval graphs.

Given an interval graph     associated with

 intervals and a positive integer , the inverse

interval graph coloring problem [9] is defined as the

problem of modifying the system of the intervals by

making parallel translation of intervals in such a way

that the chromatic number of the resulting interval

graph does not exceed  and the total deviation

between the original and new interval system is

minimum under the -norm.

In [9], the authors consider the inverse interval

graph coloring problem with   , called the

inverse booking problem, in the context of hotel

reservation. The inverse booking problem and its

variant are shown to be NP-hard in the strong

sense even in the case    and that no

polynomial time approximation algorithm can

guarantee an approximation ratio of

     , where  denotes the number of

nodes of the given interval graph[9].

In this paper, we focus on the case where the

lengths of the intervals associated with the given

interval graph are all restricted to 1 or 2, and

interval displacement is only allowed to the

righthand side with respect to its original position.

We call this problem the inverse booking problem

with release dates and denote it by  .

The formal definition of the problem 

is as follows: given a list of  intervals

      of length ∈ ∈⋯, and a

positive integer  ≥  , the task is to find the new

left endpoint ′ of each interval such that  ≤ ′

and the interval graph associated with new

intervals ′  ′′   ∈⋯ can be

properly colored with K different colors or less.

The objective is to minimize the deviation


  



′  . All numerical data are assumed to be

non-negative integers.

Using the terminology of job scheduling in the

literature [11-14], the problem with    can be

referred to as the minimum tardiness single

machine scheduling problem with arbitrary release

dates. We denote this problem by  .

It is known that the generalized problem, ,

without restriction on interval lengths is NP-hard[9],

while  with equal length intervals is

polynomially solvable[14]. In this paper, we propose

a polynomial time algorithm for solving  .

This paper is organized as follows: In Section 2,

we discuss some preliminary results on inverse

interval graph coloring. In Section 3 we describe a

polynomial time algorithm for solving  . We

prove in Section 4 the optimality of our algorithm.

We then conclude the paper.

Notes On Inverse Interval Graph Coloring Problems 59

II. Preliminaries

Here we provide some preliminary remarks on

interval translations. Since the objective function is

measured by the sum of interval translations, the

following lemmas will be useful later on.

Given an interval graph, we denote the related

interval system by a position vector   ⋯ ,

each component  of which is the left endpoint of

an interval       ⋯. Without loss of

generality, we assume that  ≤⋯≤  . By

definition of , the task is to determine a new

position vector for intervals in which all intervals

can be placed without overlapping with others. A

position vector is said to be optimal if the deviation

between the original and new interval position

vector is minimum.

Lemma 1. Assume that all intervals have equal

length. Then, there is at least one optimal position

vector for  preserving the original interval

order.

Proof. Let   ⋯ be the initial position

vector of the intervals      ⋯ such

that  ≤⋯≤  . We assume that all intervals

have equal length, i.e.,    for any ∈⋯.

We assume an optimal position vector

 ⋯  . Let us define a set of pairs

 such that  ≤  and  ≤  , meaning

that interval   , originally placed before

interval   , is placed in after   .

Suppose that   . Let    and

   be two intervals such that ∈

with   min { |∃ ∈ }, and    min

{ |∈  } for a fixed . As the interval

translations are only allowed to the right-hand

side, by definition of  , we have

 ≤  ≤   ≤  .

Let us now consider another position vector ′

obtained from  by exchanging two intervals

   and   . All the other intervals’

positions remaining the same, this interval

exchange does not make any additional translation

cost. In fact, the translation cost      of 

induced by the intervals    and    is

equal to the related cost ′   of ′:

              

         

 ′   ′   

 ′   

It means that ′ is at least as good as . So, by

exchanging every pair of intervals in   , we can

reposition all of the intervals according to the

original interval order. Since    , it

requires  -time to find an optimal position

vector preserving the initial order of intervals.

■

Proposition 1.  with equal length intervals

can be solved in  time.

Proof. Denoting by  ⋯ an optimal

solution preserving the order of interval’s left

endpoint (see Lemma 1), it is straightforward to

show that we have    and    max

{      }. Thus,  can be computed using

this relation from   to   .

■

In the sequel, we assume that every interval has

a length of 1 or 2 and that interval translations are

only allowed to the righthand side. One can

observe the following:

Observation 1. Assume two intervals intersecting

each other. If they have different starting points,

then it is always less expensive to move the interval

with larger starting point value in order to legally

place both intervals on a single line.

Observation 2. If two intervals of length 1 and 2

start at the same point, then it is always less

expensive to move the longer one in order to

legally place both intervals on a single line.

60 Journal of The Korea Society of Computer and Information

Consider the case where an interval of length 2

intersects an interval block, composed of several

intervals of length 1 or 2.

Lemma 2. Let  be an interval block, composed

of some intervals of length 1 or 2. Let   

be an interval of length 2 intersecting . We

suppose that there is an empty space of width at

least 2 between the block  and an interval

following  (if exists). Then, in order to legally

position all intervals, moving some intervals of  is

at least as expensive as moving the interval

   (without moving ) to the end of .

Proof. Let us compare the following two

solutions. In Solution 1, we shift interval   

(without moving any interval of ) to the end of  .

In Solution 2, we split  into two parts (

finishing at  and  starting at ) and shift the

second part  by distance of 2 to make a space

for the interval   . Assume that 

contains  intervals; the length   of  is

such that  ≤   ≤ . Solution 2 yields the

translation cost of  while Solution 1 yields the

cost of  . Two solutions have the same cost if

 is composed of  intervals of length 2.

■

Lemma 3. Let  be an interval block, composed

of intervals of length 1 or 2. Let   be an

interval of length 2 intersecting . If  is followed

by another

interval block ′ with distance at least 1, then it

is always less expensive to shift ′(if necessary)

and insert    between L and ′ than to

shift    to the end of the second block ′.

Proof. Let  and ′ be the number of intervals

contained in  and ′, and  and ′ the

length of  and ′, respectively. Clearly,  ≤ 

and ′≤ ′. If there is an empty space of width

2 (or more) between  and ′, then due to Lemma

1 it is optimal to place    at the end of  .

Suppose now that the width of an empty space

between  and ′ is equal to 1. In this case, in

order to put    between  and ′, we have

to push ′ to the right by distance 1. However,

since there is always an empty space of width at

least 1 between any two interval blocks, the

translation of ′ does not cause any overlap with

its following block, say ′′. So, the related

translation cost is equal to  ′. On the other

hand, it costs  ′  to shift   

to the end of ′. Since ′ ′ , inserting

   between and ′ is preferred to placing

   at the end of ′.

■

III. A polynomial-time algorithm solving



An instance of   is given by  intervals

of length 1 and  intervals of length 2. Let  

{    ≤  ≤  } and  

{      ≤  ≤    } be the set of

intervals of length 1 and 2, respectively. We

assume that the endpoints of every interval have

integer values, and the intervals of  and 

are respectively sorted in non decreasing order of

their left endpoint values;

 ≤⋯≤  ≤⋯ 
a n d

   ≤⋯≤  ≤⋯  .

Input:   {    ≤  ≤  } and  

{      ≤  ≤    }, each sorted in

nondecreasing order of their left endpoint values, and

a position vector   ⋯


 ⋯ .

Output: an optimal position vector  .

Algorithm 1. A Greedy Algorithm For Solving 

Notes On Inverse Interval Graph Coloring Problems 61

1. Find an optimal position for ;

we denote by     ⋯
 the

sub-instance of  restricted to the set  of

intervals of length 1, and by   ′⋯′


an optimal solution for   such that

′ ≤⋯≤ ′
.

Step 1.

2. Define a position vector

  ⋯


 ⋯  such that

   ′ for   ⋯ and     for

    ⋯. The first  components of 

indicate the optimal positions of the intervals of

 and the other  components indicate the

initial positions of intervals of .

1.

2. 3. For each interval   ∈ do

3.

4. 4. Put    in the nearest blank on its

right side (if necessary, push the next

interval block by distance 1);

5.

6. 5. Renew the position vector .

7.

8. 6. End For

9.

10. 7. Return  .

Step 2. First Fit

Let us denote by   ⋯


 ⋯  the

initial position vector of the given intervals; the

first  components indicate the initial position of

intervals of length 1 and the rest concern the initial

position of intervals of length 2. In the sequel, an

instance of   will be presented by means of

this position vector . Then,  can be seen

as the problem of finding a new interval position

vector  ⋯


 ⋯  for which

 all intervals can be legally positioned on a same

line, i.e., without intersecting any other intervals,

 ∀∈⋯  ≤  and  the total cost

of translations 
  



    is minimum.

We propose a greedy algorithm for solving

 . Our algorithm is implemented in two

steps. At the first step, we restrict our attention to

the set  of intervals of length 1. Due to

Proposition 1 and Lemma 1, one can find in 

time a minimum cost legal position assignment for

 preserving the initial interval order.

Note that once all the intervals of length 1 are

optimally distributed on the line, we obtain a finite

number of interval blocks; we number them in

nondecreasing order of their starting point values.

These blocks generate a finite number of gaps

(empty spaces) between blocks of consecutive

indices. We call them blanks. Since the endpoints

of every interval are integers, each blank has an

integral size larger than 1.

At the second step, we are given  intervals of

length 2 to be positioned on the line already loaded

by the intervals of length 1. Using the procedure

First Fit, we determine the new position for each

interval of . Recall that the intervals of 

are sorted in nondecreasing order of their left

endpoint values. The procedure First Fit will be

executed following this order until every interval of

 is legally positioned, i.e., without intersecting

any other intervals. The complexity of the proposed

algorithm is of order .

IV. The Proof for Optimality

Given an instance   ⋯


 ⋯  of

 , we denote by     ⋯
 the

sub-instance of I restricted to the interval set 

of length 1. Let   ′⋯′
 be an optimal

solution for    such that ′ ≤⋯≤ ′
(the

existence of  is due to Lemma 1). We call  the

intermediate solution of   . Then, one can

62 Journal of The Korea Society of Computer and Information

consider another problem to find an optimal

assignment of the intervals of  to the line

already loaded by the intervals of . An instance

of this problem can be expressed by the following

position vector  ′⋯′


 ⋯  (of

dimension     ); the first  components

indicate the optimal positions for  found at

the first step, and the other  components

indicate the initial positions for . The objective

is to find a new position vector for which all the

intervals of ∪ can be legally positioned on

the same line and the total translation is minimum.

We first show that First Fit solves this problem

efficiently.

Lemma 4. The procedure First Fit is optimal for

the instance  .

Proof. This result immediately follows from

Lemma 1, as the procedure First Fit respects this

lemma.

■

Let  ⋯


 ⋯  be an

optimal solution for the whole instance  such that

∀  ⋯,  ≤   and  ≤⋯≤ 
and


  ≤⋯≤  (such an optimal position vector

exists due to Lemma 1). The sub-vector    of 

restricted to  indicates the position of the

intervals of  in the final solution . Below, we

show that there exists an optimal solution of

  in which every interval of length 1 is

located on the righthand side with respect to its

position in the intermediate solution, .

For any two vectors  and  of same dimension,

we say  ≤  if the component values of  are,

component by component, smaller than those of .

Lemma 5. There exists an optimal position vector

 such that  ≤    ), i.e.,

∀  ⋯ ′ ≤ .

Proof. Suppose that there are some intervals

     ⋯, such that   ′ where

′ and  respectively denote the left endpoint of

the interval    in the intermediate solution,

, and the optimal solution, I. Let    be the

one having the smallest index among such

intervals: ∀ ≤  ′ ≤   and    ′. In , the

interval    is placed at the position ′ . It

means that all positions before  are already

taken by some intervals of smaller index than .

Otherwise, one can reduce the translation cost

associated with  by placing interval   

before the position ′ , and this contradicts the

fact that  is optimal for    . Since    ′,

there is in  an interval  with   , placed at the

position   , i.e., ′     . Besides, since

  , we have: ′   ≤  . Let us now

exchange in     the components    and

   , i.e., we assign the interval    to

the position  and    to the position .

This exchange does not yield any extra cost. So, by

repeating such exchanges, we can construct an

optimal solution  such that ∀  ⋯ ,

′ ≤  .

■

Lemma 5 implies that every optimal solution for I

(the whole instance of  can be constructed

from an optimal solution for the sub-instance    .

Let us now show that Algorithm 1 optimally solves

 .

Proposition 2. Algorithm 1 optimally solves

 in time .

Proof. Given an instance , let us denote by 

the optimal solution value for . Then, the solution

value returned by Algorithm 1 is equal to

     . To prove the optimality of

Algorithm 1, we show that       . It

Notes On Inverse Interval Graph Coloring Problems 63

is straightforward to see that

 ≤    . In fact,  is a

minimization problem and Algorithm 1 returns a

feasible solution for it.

We now show that  ≥      . Due to

Lemma 5, one can construct an optimal solution 

for  from an optimal solution   ′⋯′
 for

   . So, the optimal solution value of  can

be expressed as follows:        where 

is the translation cost occurred when positioning

the intervals of length 2. Since the obtained

solution is feasible for  ≥ , we have:

 ≥    .

■

V. Conclusion

In this paper, we have studied the inverse

booking problem with release dates, which is an

interesting variant of the inverse interval graph

coloring problem where each interval has length 1

or 2, and the translation of intervals is only allowed

to the righthand side. We proposed a polynomial

time algorithm for solving this problem and proved

its optimality. This algorithm can be very useful for

solving the university course timetabling problem,

because many university offers the lectures of 1

and 2 hours for the courses of 3 credit. However,

our algorithm does not work for the case where

interval lengths are either 1 or  ≥  . It will be

interesting to investigate the computational

complexity of  with another restriction on

interval lengths. It also remains as a future

research to devise an efficient algorithm that can

solve   for a fixed constant  ≥ .

REFERENCES

[1] M.R. Garey, and D.S. Johnson, “Computers and Intractability

- A Guide to The Theory of NP-completeness,” San

Francisco, Freeman, January, 1979.

[2] M. Cangalovic, and J.A.M. Schreuder, “Exact Coloring

Algorithms for Weighted Graphs Applied to Timetabling

Problems with Lectures of Different Lengths,” European

Journal of Operational Research, Vol. 51, No. 2, pp.

248-258, March 1991.

[3] D. De Werra, “Some Combinatorial Models for Course

Scheduling,” Practice and Theory of Automated Timetabling,

ser. Springer, Lecture Notes in Computer Science, Vol.

1153, pp. 296-308, March 1996.

[4] D. De Werra, “The Combinatorics of Timetabling,” European

Journal of Operational Research, Vol. 96, No. 3, pp.

504-513, February 1997.

[5] R.K. Ahuja, and J.B. Orlin, “Inverse Optimization,”

Operations Research, Vol. 49, No. 5 pp. 771-783, October

2001.

[6] R.K. Ahuja, and J.B. Orlin, “A Faster Algorithm for the

Inverse Spanning Tree Problem,” Journal of Algorithms, Vol.

34, No. 1, pp. 177-193, January 2000.

[7] Y. Chung, and M. Demange, “On Inverse Traveling Salesman

Problems,” 4OR - A Quarterly Journal of Operations

Research, Vol. 10, pp. 193-209, June 2012.

[8] Y. Chung, and M. Park, “Notes On Inverse Bin-Packing

Problems,” Information Processing Letters, Vol. 115, pp.

60-68, January 2015.

[9] Y. Chung, J.F. Culus, and M. Demange, “Inverse Chromatic

Number Problems in Interval and Permutation Graphs,”

European Journal of Operational Research Vol. 243, pp.

763-773, 2015.

[10] C. Heuberger, “Inverse Combinatorial Optimization: A

Survey on Problems, Methods, and Results,” Journal of

Combinatorial Optimization, Vol. 8, No. 3, pp. 329-361,

September 2004.

[11] M.R. Garey, R.E. Tarjan, and G.T. Wilfong, “One-Processor

Scheduling with Symmetric Earliness and Tardiness

Penalties,” Mathematics of Operations Research, Vol. 13, pp.

330–348, May 1988.

[12] A.H.G. Rinnooy Kan, “Machine Scheduling Problem:

Classification, Complexity and Computation,” Nijhoff, The

Hague, December 1976.

[13] M. Müller-Hannemann, and A. Sonnikow, “Non-Approximabi

lity of Just-In-Time Scheduling,” Journal of Scheduling, Vol.

12, No. 5, pp. 555-562, October 2009.

[14] P. Baptiste, “Scheduling Equal-Length Jobs on Identical

Parallel Machines,” Discrete Applied Mathematics, Vol. 103,

No. 1-3, pp. 21–32, July 2000.

64 Journal of The Korea Society of Computer and Information

Authors

Yerim Chung received the B.S. degree

in Business Administration from Yonsei

University, Korea, in 2000. She

received the M.S. and Ph.D. degree in

Applied Mathematics and Computer

Science from Paris 1 University,

France, in 2004 and 2010, respectively. Dr. Chung

joined the faculty of Business School at Yonsei

University, Seoul, Korea, in 2011. She is interested in

inverse optimization and network optimization, and their

many application problems.

Hak-Jin Kim received the M.S. degree

in Mathematics from University of

Illinois, Urbana-Champaign, and the

Ph.D. degree in Operations Research

from Tepper Business School,

Carnegie-Mellon University, U.S.A.

He has been a faculty member in the School of

Business, Yonsei University, since 2001. He is interested

in the logic-based optimization, the constraint

programming, reinforcement learning, and their many

application problems.

