• Gupta, Anuradha (Department of Mathematics Delhi college of Arts and Commerce University of Delhi) ;
  • Singh, Shivam Kumar (Department of Mathematics University of Delhi)
  • Received : 2018.10.28
  • Accepted : 2018.12.27
  • Published : 2019.10.31


The notion of $k^{th}$-order essentially slant weighted Toeplitz operator on the weighted Lebesgue space $L^2({\beta})$ is introduced and its algebraic properties are investigated. In addition, the compression of $k^{th}$-order essentially slant weighted Toeplitz operators on the weighted Hardy space $H^2({\beta})$ is also studied.


  1. P. Aiena, Semi-Fredholm operators, perturbation theory and localized SVEP, XX Escuela Venezolana de Mathematicas, Ed. Ivic, Merida (Venezuela), 2007.
  2. S. C. Arora and J. Bhola, Essentially slant Toeplitz operators, Banach J. Math. Anal. 3 (2009), no. 2, 1-8.
  3. S. C. Arora and R. Kathuria, Slant weighted Toeplitz operator, Int. J. Pure Appl. Math. 62 (2010), no. 4, 433-442.
  4. S. C. Arora and R. Kathuria, On weighted Toeplitz operators, Aust. J. Math. Anal. Appl. 8 (2011), no. 1, Art. 11, 10 pp.
  5. S. C. Arora and R. Kathuria, The compression of a slant weighted Toeplitz operator, J. Adv. Res. Pure Math. 4 (2012), no. 4, 48-56.
  6. J. Barra and P. R. Halmos, Asymptotic Toeplitz operators, Trans. Amer. Math. Soc. 273 (1982), no. 2, 621-630.
  7. G. Datt and N. Ohri, Essentially generalized $\lambda$-slant Toeplitz operators, Tbilisi Math. J. 10 (2017), no. 4, 63-72.
  8. G. Datt and D. K. Porwal, On a generalization of weighted slant Hankel operators, Math. Slovaca 66 (2016), no. 5, 1193-1206.
  9. R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
  10. A. Gupta and S. K. Singh, Slant H-Toeplitz operators on the Hardy space, J. Korean Math. Soc. 56 (2019), no. 3, 703-721.
  11. M. C. Ho, Properties of slant Toeplitz operators, Indiana Univ. Math. J. 45 (1996), no. 3, 843-862.
  12. M. C. Ho, Spectra of slant Toeplitz operators with continuous symbols, Michigan Math. J. 44 (1997), no. 1, 157-166.
  13. R. L. Kelley, Weighted shifts on Hilbert space, ProQuest LLC, Ann Arbor, MI, 1966.
  14. V. Lauric, On a weighted Toeplitz operator and its commutant, Int. J. Math. Math. Sci. 2005 (2005), no. 6, 823-835.
  15. A. L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, 49-128. Math. Surveys, 13, Amer. Math. Soc., Providence, RI, 1974.