DOI QR코드

DOI QR Code

SOME RESULTS IN η-RICCI SOLITON AND GRADIENT ρ-EINSTEIN SOLITON IN A COMPLETE RIEMANNIAN MANIFOLD

  • Received : 2018.08.14
  • Accepted : 2019.02.27
  • Published : 2019.10.31

Abstract

The main purpose of the paper is to prove that if a compact Riemannian manifold admits a gradient ${\rho}$-Einstein soliton such that the gradient Einstein potential is a non-trivial conformal vector field, then the manifold is isometric to the Euclidean sphere. We have showed that a Riemannian manifold satisfying gradient ${\rho}$-Einstein soliton with convex Einstein potential possesses non-negative scalar curvature. We have also deduced a sufficient condition for a Riemannian manifold to be compact which satisfies almost ${\eta}$-Ricci soliton.

Keywords

References

  1. W. Ambrose, A theorem of Myers, Duke Math. J. 24 (1957), 345-348. http://projecteuclid.org/euclid.dmj/1077467480 https://doi.org/10.1215/S0012-7094-57-02440-7
  2. C. Aquino, A. Barros, and E. Ribeiro, Jr., Some applications of the Hodge-de Rham decomposition to Ricci solitons, Results Math. 60 (2011), no. 1-4, 245-254. https://doi.org/10.1007/s00025-011-0166-1
  3. A. Barros, J. N. Gomes, and E. Ribeiro, Jr., A note on rigidity of the almost Ricci soliton, Arch. Math. (Basel) 100 (2013), no. 5, 481-490. https://doi.org/10.1007/s00013-013-0524-1
  4. A. Barros and E. Ribeiro, Jr., Some characterizations for compact almost Ricci solitons, Proc. Amer. Math. Soc. 140 (2012), no. 3, 1033-1040. https://doi.org/10.1090/S0002-9939-2011-11029-3
  5. A. M. Blaga, Almost $\eta$-Ricci solitons in $(LCS)_n$-manifolds, Bull. Belg. Math. Soc. Simon Stevin 25 (2018), no. 5, 641-653. https://projecteuclid.org/euclid.bbms/1547780426 https://doi.org/10.36045/bbms/1547780426
  6. M. Brozos-Vazquez, E. Garcia-Rio, and X. Valle-Regueiro, Half conformally flat gradient Ricci almost solitons, Proc. A. 472 (2016), no. 2189, 20160043, 12 pp. https://doi.org/10.1098/rspa.2016.0043
  7. E. Calvino-Louzao, M. Fernandez-Lopez, E. Garcia-Rio, and R. Vazquez-Lorenzo, Homogeneous Ricci almost solitons, Israel J. Math. 220 (2017), no. 2, 531-546. https://doi.org/10.1007/s11856-017-1538-3
  8. G. Catino, Generalized quasi-Einstein manifolds with harmonic Weyl tensor, Math. Z. 271 (2012), no. 3-4, 751-756. https://doi.org/10.1007/s00209-011-0888-5
  9. G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math. 287 (2017), no. 2, 337-370. https://doi.org/10.2140/pjm.2017.287.337
  10. G. Catino, P. Mastrolia, D. Monticelli, and M. Rigoli, On the geometry of gradient Einstein-type manifolds, Pacic J. Math. 286 (2017), no. 1, 39-67. https://doi.org/10.2140/pjm.2017.286.39
  11. G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66-94. https://doi.org/10.1016/j.na.2015.10.021
  12. J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. (2) 61 (2009), no. 2, 205-212. https://doi.org/10.2748/tmj/1245849443
  13. R. E. Greene and H.Wu, On the subharmonicity and plurisubharmonicity of geodesically convex functions, Indiana Univ. Math. J. 22 (1972/73), 641-653. https://doi.org/10.1512/iumj.1973.22.22052
  14. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306. http://projecteuclid.org/euclid.jdg/1214436922 https://doi.org/10.4310/jdg/1214436922
  15. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159, (2002).
  16. P. Petersen, Riemannian Geometry, second edition, Graduate Texts in Mathematics, 171, Springer, New York, 2006.
  17. S. Pigola, M. Rigoli, M. Rimoldi, and A. Setti, Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), no. 4, 757-799.
  18. R. Sharma, Almost Ricci solitons and K-contact geometry, Monatsh. Math. 175 (2014), no. 4, 621-628. https://doi.org/10.1007/s00605-014-0657-8
  19. K. Yano, Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics, No. 1, Marcel Dekker, Inc., New York, 1970.