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Abstract  

In this paper, dynamic analysis of a nonlinear active vibration absorber is conducted with a time delay acceleration 

feedback to suppress the vibration of a nonlinear single degree of freedom primary system. The primary system 

consisting of linear and nonlinear cubic springs, mass, and damper is subjected to the multi-harmonic hard excitation 

with a parametric excitation. It is proposed to reduce the vibration of the primary system and the absorber by using a 

lead zirconate titanate (PZT) stack actuator in series with a spring in the absorber which configures as an active 

vibration absorber. The method of multiple scales (MMS) is used to obtain the approximate solution of the system 

under the internal resonance, subharmonic, superharmonic, and principal parametric resonance conditions 

simultaneously. Frequency and time responses of the system are investigated considering a delay in the feedback for 

the various parameters of the absorber configuration and controlling force. 
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1. Introduction 

 

Dynamic vibration absorber (DVA) suppress the vibration 

of the primary system by shifting its resonant natural 

frequency. Tuned vibration absorber absorbs the vibration of 

the primary system i.e. the amplitude of vibration of the 

primary system becomes zero at its natural frequency. But the 

response amplitudes of both the primary system and the 

absorber become very large at their modal frequencies [1, 2]. 

Hence in these systems dampers are used to suppress the 

vibration. The mass ratio between the absorber and the 

primary system plays a significant role in the suppression of 

vibration, which is considered as 1:20 in most of the literature 

[3, 4]. The high mass ratio increases the overall structural 

weight of the system. However, by the use of various 

optimization technique, active materials and new model design, 

the vibration of the primary system can be reduced for a larger 

band of frequencies [5, 7] with minimum absorber weight. 

Many dynamical systems are inherently nonlinear due to 

prolonged use and applications [8]. Therefore the nonlinear 

vibration absorber and the nonlinear primary systems are more 

practical in nature. In such systems, the active vibration 

absorber is more useful than the passive one. In present work, 

the vibration of a nonlinear primary system with a spring-mass 

damper is suppressed by an active vibration absorber 

consisting of a PZT stack actuator in series with a spring as 

shown in Fig.1. The mass ratio between the absorber and the 

primary system is considered as 1:50. The analysis is carried 

out by considering time delay in the acceleration feedback of 

the primary system which has not been explored extensively in 

the literature. In the proposed model the primary system is 

subjected to a multi-harmonic hard excitation and a parametric 

excitation. The proposed system is similar to the model 

discussed in reference [9, 10] where the coupled pitch and roll 

motion of the ship was considered. The governing nonlinear 

equations of the system are solved by using the method of 

multiple scales under internal resonance, sub-harmonic, super-

harmonic and parametric resonance conditions simultaneously. 

  

2. Mathematical Modeling 

 

  In this proposed model ,  ci im and ik  denotes mass, 

damping and stiffness of the primary system and the DVA 

respectively for i = 1, 2. 3k  denotes the stiffness of the 

spring connected in series with PZT actuator of stiffness 
E

Pk  

and cF  indicates the actuating force of the combination. The 

terms 13k  and 23k  denotes cubic nonlinear stiffness in the 

primary system and absorber respectively. Two multi-
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harmonic excitation force of    11 1 21 2cos ,  cosF t F t  and a 

parametric excitation force of  1 31 3cosx F t are acting on the 

primary system. The governing equation the system is 

described by two ordinary coupled differential equations as 

given below. 

 

 

 

 

 

Fig. 1. Nonlinear active vibration absorber 
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The controlling force can be written as  1 0 2c rF k x x    

where    3 3

E E

r p pk k k k k  . The nominal displacement of 

the PZT actuator 0  can be expressed [11] as 0 33nd V  , 

where 33,  ,  cn d k and d are the number of wafers, dielectric 

charge constant, controller gain and time delay in the feedback 

system respectively. Considering the effect of time delay in the 

acceleration feedback of the primary system the voltage 

developed in the PZT actuator is expressed as 

  1c dV k x t   . Substituting the value of 
cF  with 

1 1 1/n k m  and 1n t   Eqs. (1) and (2) are non-

dimensioned.  A small bookkeeping parameter  is 

considered for ordering Eqs. (1) and (2) which can be 

expressed as 
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Method of multiple scales is used to obtain the approximate 

solution of the Eq. (3) and (4). 

 

2.1 Approximate Solution Using MMS 

Following the standard procedure of MMS [12], the perturbed 

solutions and time derivatives in the new time scale 

( 0, 1, 2, ....)nT n   are expanded as 

   1 10 0 1 11 0 1, ,x x x                              (5)

     1 10 0 1 11 0 1, ,d d d d dx x x                    (6)

   2 20 0 1 21 0 1, ,x x x                              (7) 

The time scales can be written as 
n

nT   . Time derivati

ves along different time scales lead to the differential ope

rators as 
0 1 ...

d
D D

d



   and 

2
2

0 0 12
2 ...

d
D D D

d



    

where n nD T   . Substituting above equations into Eqs. 

(3) and (4), and collecting the coefficients of 
n  and eq

uating them to zero, the following equations can be obtai

ned. 
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The solution of the Eq. (8a) can be written as

     10 1 1 0 1 1 0 2 2 0exp exp expx A i i i cc           (9) 

where 
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,
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 and ‘cc’ 

stands for the complex conjugate of the preceding terms. and

 1 1A   is an unknown complex function of time which will 

be determined later. Considering 1  and 2  away from 

1  and substituting Eq. (9) into Eq. (8b) the following 

equation can be obtained. 
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where 
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Substituting Eqs. (9) and (10) into Eq. (8c) and (8d) 

respectively, the corresponding equations are reduced as 
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 2.2 Resonance Cases 

  The various resonance conditions are observed by 

comparing the natural frequencies with the forcing frequencies 

in the Eqs. (11) and (12), by which one may observe six 

different resonance conditions namely as 1) primary resonance 

( 1j   ), 2) sub-harmonic resonance ( 2 13  ), 3) 

superharmonic resonance ( 1 13   ), 4) principal parametric 

resonance ( 3 12  ), 5) internal resonance 

( 2 1 1 2,  m m     for m =1, 3) and 6) simultaneous 

resonance (for any combination of above resonance cases). In 

this case, the natural frequency of the absorber is an integer 

multiple of the natural frequency of the primary system, which 

leads to the internal resonance condition. In present work, the 

combinations of the internal resonance ( 2 13    ), 

subharmonic resonance ( 2 1 23    ) superharmonic 

resonance (
1 1 13     ) and principal parametric 

resonance (
3 1 32    ) are considered. The terms 

1 2,  ,     and 
3  i ndicates the detuning parameters for 

internal resonance, superharmonic, subharmonic and principal 

parametric harmonic resonance conditions respectively. The 

detuning parameter represents the nearness of the external or 

internal frequency to the natural frequency of the system. For 

example, in the case of internal resonance, the detuning 

parameter  represents how close the second mode natural 

frequency 2  is close to three times the first mode natural 

frequency. The secular terms for these resonance conditions 

are obtained from Eqs. (11) and (12) which can be written as 
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     (14) 

The amplitudes 1A  and 2A  may be expressed in polar form 

as 1

1 1

1

2

iA a e  and 2
2 2

1
.

2

i
A a e


  Here 1 2 1,  ,  a a  and 2  

are the real numbers representing amplitude and phase of the 

response respectively. Separating the real and imaginary parts 

from the Eq. (13) and (14) the final reduced autonomous 
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where 

 1 1 1 1 2 2 1 2 2 1 3 1,  ,  3 ,  2                   . 

The steady-state equations of the system are obtained by 

submitting 1 1 2 2 0.a a      Further, the stability of the 

obtained steady-state solution can be obtained by finding the 

eigenvalues of the Jacobian matrix. In the following section, 

the physical system parameters, the numerical results and 

discussion will be carried out. 

 

3. Results and discussions 
 

In this section, considering the mass of the absorber by 

50 times less than the primary system, frequency and 

time responses are carried out. The primary system 

parameters are the same as those considered in Habib 

et. al [3]. The mass, stiffness and damping coefficient 

of the primary system is 1 kg, 1 N/m and 0.002 Ns/m 

respectively. The absorber stiffness and damping 

coefficient are considered as 0.02 N/m and 0.012 Ns/m, 

respectively. The external excitation forces 11F , 21F  

and 31F on the primary system are considered as 0.4 N, 

0.38 N and 0.04 N respectively. The piezoelectric 

properties were referred from Mallik and Chatterjee 

[11]. It may be noted that the natural frequencies of the 

primary system 1  and the absorber 2  depend 

upon the equivalent stiffness of PZT actuator and 

spring stiffness 3k . It can be observed that while the 

variation of the primary system 1  occurs small from 

1 rad/s to 1.18 rad/s the absorber 2  changes largely 

from 1 rad/s to 3 rad/s by changing the stiffness rk  

from 0 to 0.176 N/m. The nonlinear stiffness in the 

primary system and absorber varies from 4 % to 10% 

of the linear stiffness in both the primary system and 

the absorber. The frequency responses of the primary 

system and the absorber are obtained from the steady-

state Eq. (15) to (18) using Newton’s method. The non-

dimensional frequency response of the primary system 

and the absorber are shown in Fig. 2 for various values 

of a detuning parameter  . The stable and unstable 

branches are respectively represented by black and red 

colour. In Figs. 2(a) and (b) the plots are obtained for 

1cF = 0.8, 13 = 0.8, 23 =4 2z = 6 at  = 0. It is 

observed from Fig. 2(a) that the frequency response 

amplitude of the primary system attains higher 

amplitude when the detuning parameter 1 is in the 

range of  -1.4  -0.5. The maximum amplitude of 

0.4 is observed at 1 = -1.2. The instability in the 

frequency response with both stable and unstable 

solutions are observed for 1  in the range of -1.1  

-0.6. For all other frequencies of operation i.e, when 

1  is away from -1.4  -0.5, the amplitude of the 

frequency response is 0.02. The frequency response of 

the absorber shown in Fig. 2(b) attains a value of 2 at 
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1 =0 and the system has muti stable solution for 1  

in the range of 0  0.5. Hence the system may be 

operated at a frequency corresponding to the detuning 

parameter 
1 = -1.2  -2. It is also observed from 

the Figures that at 
1  = -1 the amplitude of the 

primary system is high whereas at the same frequency 

the absorber indicates the minimum amplitude.  The 

primary system indicates the minimum amplitude for  

1  value in the range of -0.5  2 whereas, at the 

same frequency, the absorber response is high. 

Therefore the amplitude responses of both the primary 

system and the absorber are found to be minimum for 

1  in the range of -4  -1.5 frequency of operation. 

In Figs. 2(c) and (d) the frequency response of the 

system is studied for the passive case ( 1cF =0)  by 

considering the primary system as linear i.e. ( 13 =0) 

and the absorber as nonlinear ( 23 =4). The frequency 

response of the primary system shown in Fig. 2(c) is 

observed to be that of a linear system with instability 

when 1  is in the range of -1.1  -0.95. For the 

absorber (Fig. 2(d)) two instability region developed 

for 1  in the range of -.5  -0.1 and from 0.04  

0.14. respectively. It can be observed from Figs. 2 (a) 

and (c) that the instability region increases 

proportionally to cubic nonlinear stiffness of the 

primary system whereas the amplitude of the primary 

system is comparatively low at the high cubic 

nonlinear stiffness of the primary system in the stable 

frequency of operation. The nonlinear stiffness in the 

primary system produces low sensitivity in the 

frequency response and the amplitude gradually 

increases with increasing 1  value. In Figs. 2(e) and 

(f) the detuning parameter of internal resonance   and 

the excitation force 21F  are considered as zero. It is 

observed from Fig. 2(e) that the amplitude response of 

the primary system shows more hardening effect than 

from Fig. 2(a) with a low amplitude at 1 = -1. 

Considering the effect of   on the frequency 

response of the primary system it is observed from 

Figs. 2(a) and 2(e) that with increasing   the 

amplitude of the resonating response is shifted to the 

positive axis with the high response in the range of -

1.4  -0.5. From Fig. 2(f) one can observe both 

stable and unstable solutions for 1  value increased 

from -0.5 with more hardening effect in the response 

curve. The amplitude response of the absorber shown 

in Fig. 2(f) gradually increases to a maximum value of 

3.2 for 1  = 2. In Figs. 2(g) and 2(h) the detuning 

parameter   is maximum value of 3.2 for 
1  = 2. In 

Figs. 2(g) and 2(h) the detuning parameter   is 

considered as -4 with the same excitation force 
21F as 

indicated in Fig. 2(a). From Fig. 2(g) it is observed 

that only stable solutions are developed for 
1  in the 

range of -0.5  -0.4 otherwise at all other values of 

1  both stable and unstable solutions are developed.  

The frequency response of the absorber is shown in Fig. 

2(h) where the multiple solutions consisting of both 

stable and unstable branches can be observed for any 

value of 
1 . From Fig. 2 it is observed that the 

frequency responses of the primary system and the 

absorber shows more unstable branches for   not 

equal to zero. It is also shown stable solutions with a 

small amplitude of 0.02 for  =0 and 
1  in the range  

of -2 to -1. The time response of 
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Fig. 2.  Frequency response of the primary System and 

the absorber (a, b) for 
1cF = 0.8, 

13 = 0.8, 
23 =8, 

2z = 

6 at  = 0 (c, d) for 
1cF = 0, 

13 = 0, 
23 =0.4, 

2z = 6 at 

 = 0 (e, f) for 
21F = 0, 

1cF = 0.8, 
13 = 0.5, 

23 =4,
2z = 

6 at  = 0 (g, h) for 
21F = 0.38, 

1cF = 0.8, 
13 = 0.5, 

23

=4, 
2z = 6 at  = -4. 

the vibration absorber and the primary system are 

obtained by solving Eqs. (15) to (18) using the fourth-

order Runge Kutta method (ode45 in MATLAB) for the 

system with a constant delay of 0.6 as shown in Fig. 3. 

In Fig. 3 all the system parameters are considered as 

the same as those in Fig. 2 thereby only the time 

response at a particular value of 
1  is shown. In Figs. 

3(a) and (b) the time responses of the primary system 

and the absorber are shown at 
1  = -1. The periodic 

response for both the primary system and the absorber 

can be observed where the amplitude of the primary 

system varies from 0.08 to 0.42 at a time period of  

100 non-dimensional time as shown in Fig. 3(a). The 

time response of the absorber also shows a periodic 

response whose amplitude oscillates from 0.01 to 

0.0122 for a time period of 100 as shown in Fig. 3(b). 

In Fig. 2(a) at 
1  = -1 the solution switches from 

stable to unstable ones and in Fig. 3 (a) at same 
1  

value periodic response is shown, so one can observe 

Hopf bifurcation point at  
1  equal to 1. In Figs. 3(c) 

and (d) the amplitude responses of the primary system 

and the absorber are shown at  
1  = -1.1. The 

amplitude response in Fig. 3(c) shows the same 

periodic one as shown in Fig. 3(a) except a large 

amplitude. In Fig. 3(d) a quasiperiodic response is 

observed where the amplitude of the absorber 

oscillates from 0.02069 to 0.02074. In Figs. 3(e) and (f) 

the periodic responses for both the primary system and 

the absorber are observed at
1  = -0.95. The periodic 

response is also observed in Fig. 3(e) with a maximum 

amplitude of 0.8 at the time period of 750 

nondimensional value. The absorber response is shown 

in Fig. 3(f) is also periodic with the time period of 700 

nondimensional value with maximum  

  

 

Fig. 3. Time response of the primary system and the 

absorber (a, b) for 
1cF = 0.8, 

13 = 0.8,
23 =8,

2z = 6 at 

 = 0 and    
1 = -1 (c, d) for 

1cF = 0, 
13 = 0, 

23 =4, 

2z = 6 at  = 0  and 
1 = -1.1  (e, f) for 

21F = 0, 
1cF = 

0.8, 
13 = 0.5,

23 =4
2z = 6 at  = 0  and  

1 = -0.95  

(g, h) for 
21F = 0.38, 

1cF = 0.8, 
13 = 0.5, 

23 =4, 
2z = 6 

at  = -4 and 
1 = -0.3. 

and minimum amplitudes of 0.0268 and zero 

respectively. In the Figs. 3(g) and (h) time response of 

the primary system and the absorber are shown at 
1 = 

-0.3. Fig. 3(g) shows periodic response such that with 

the time period of 160 non-dimensional value the 

amplitude of the system varies from -0.34 to 0.18. For 

the absorber as shown in Fig. 3 (h) quasiperiodic 

response is observed. The corresponding frequency 

response obtained by Newton's method shown in Fig.2 

is compared with the results from the fourth -order 

(e) 
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Runge Kutta method shown in Fig.3. two results are 

close to each other at the particular value of 
1 .  

 

4. Conclusions 
 

In this paper, the performance of an active nonlinear vibration 

absorber attached to a nonlinear single degree of freedom 

primary system, and subjected to a hard multi-harmonic and a 

parametric excitation is studied. The active force by the PZT 

actuator is developed from a combination of controlling force 

and a spring attached in series, thereby the frequency of the 

absorber can be changed actively. The analysis is carried out 

by a time delay acceleration feedback of the primary system 

using the method of multiple scales and fourth-order Runge 

Kuta method under internal resonance, parametric, 

subharmonic and superharmonic resonance conditions 

simultaneously for a mass ratio of 1:50 between the absorber 

and the primary system. The frequency response obtained by 

Newton’s method is found to be in good agreement with the 

results from the fourth-order Runge Kutta method.  

From the analysis, it is inferred that for controlling the 

vibration of the primary system subjected to hard multi 

excitations and parametric excitation with the absorber of 

mass ratio 1:50, the excitation frequencies of external forcing 

plays a significant role which makes the response amplitude of 

the system high and unstable. In the proposed model as the 

frequency of the absorber is dependent upon the equivalent 

stiffness of the PZT actuator and the spring attached in series 

one can tune the frequency of the absorber actively. The cubic 

nonlinear stiffness in the primary system reduces the 

amplitude of the primary system than that without considering 

a nonlinearity in the stiffness at the resonating frequency of 

operation. The effect of the controlling force on the 

suppression of the vibration in the primary system is not 

observed whereas in the absorber the vibration is minimized. 

Here the controlling force is considered of 
2 order thereby 

the force developed by the actuator is so small to reduce the 

vibration of the primary system which is excited by 
0  order 

of excitation. The hard excitation on the primary system 

produces a high amplitude and instability range for the mass 

ratio of 50, therefore the external forcing of the order of   or 

2  is more effective for studying the effect of actuating force 

on the primary system. 

In the proposed model as the spring is connected in series with 

the PZT actuator, the actuating force can be controlled more 

easily without much dependency upon voltage supply. The 

proposed model is more economical and also designed as 

failsafe as the absorber can be operated both passively and 

actively to protect the system from severe vibration. 
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