DOI QR코드

DOI QR Code

Geological Significance of Liquefaction and Soft-sediment Deformation Structures

액상화와 연질퇴적변형구조의 지질학적 의미

  • Ghim, Yong Sik (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Ko, Kyoungtae (Geology Division, Korea Institute of Geoscience and Mineral Resources)
  • 김용식 (한국지질자원연구원 국토지질연구본부) ;
  • 고경태 (한국지질자원연구원 국토지질연구본부)
  • Received : 2019.09.17
  • Accepted : 2019.10.10
  • Published : 2019.10.28

Abstract

Liquefaction occurs by a temporal loss of sediment strength as a consequence of increased pore water pressure during the re-arrangement of unconsolidated, granular sediments. Liquefaction is dependent on the physical properties of the sediments and cause surface cracks, landslide, and the formation of soft-sediment deformation structures(SSDS). SSDS is formed by the combined action of the driving force and deformation mechanism(liquefaction, thixotropy, and fluidization) that is triggered by endogenic or exogenic triggers. So research on the SSDS can unravel syndepositional geological events. If detailed sedimentologic analysis together with surrounding geological context suggest SSDS formed by earthquakes, the SSDS provide a clue to unravel syndepositional tectonic activities and detailed paleoseismological information(> Mw 5) including earthquakes that leave no surface expression.

액상화는 반복적인 전단력 혹은 강한 충격으로 인해 실트-모래로 구성된 미고결 퇴적층내 공극수압이 증가하여 전단강도를 상실함에 따라 미고결퇴적층이 액체처럼 거동하는 현상이다. 액상화는 미고결 퇴적층의 물리적 특성인 입도, 느슨함, 지하수위, 지층의 심도, 연령, 액상화 발달 유무 등과 밀접한 관련이 있으며 지표균열, 사태 및 연질퇴적변형 구조의 형성을 야기한다. 연질퇴적변형구조는 다양한 변형원인(trigger)에 의해 퇴적물의 전단강도가 감소함에 따라 퇴적물의 하중 등과 같은 변형동력(driving forces)이 발생하여 액상화, 요변성과 이에 수반된 유체화로 대표되는 변형기작(deformation mechanism)을 통해 형성된다. 이러한 변형구조는 퇴적작용이나 지진과 같은 지질학적 사건에 의해 발생하기 때문에 퇴적분지에서 발생하였던 지질학적 사건을 이해하는데 있어 중요한 역할을 한다. 이 뿐만 아니라 지진에 의하여 유발된 연질퇴적변형구조는 퇴적동시기성 구조운동을 이해할 수 있으며 지표파열을 수반하지 않는 피해 유발지진(> Mw 5.0)에 대한 고지진정보를 제공한다.

Keywords

References

  1. Alfaro, P., Delgado, J., Estevez, A., Molina, J.M., Moretti, M. and Soria, J.M. (2002) Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain). International Journal of Earth Sciences, v.91, p.505-513. https://doi.org/10.1007/s00531-001-0241-z
  2. Allen, J.R.L. (1982) Sedimentary structures: their character and physical basis. Vol. II, Elsevier, Amsterdam, 663p.
  3. Castro, G. (1995) Empirical methods in liquefaction analysis. Proc. the First Leonardo Zeevaert Conference, Mexico, p.1-41.
  4. Carling, P.A. and Leclair, S.F. (2019) Alluvial stratification styles in a large, flash-flood influenced dryland river: theluniriver, Thar Desert, north-West India. Sedimentology, v.66, p.102-128. https://doi.org/10.1111/sed.12487
  5. Counts, R.C. and Obermeier, S.F. (2012) Subtle seismic signatures, using small-scale features and ground fractures as indicators of paleoseismicity. In R. T. Cox, M. P. Tuttle, O. Boyd, and J. Locat (ed.), Recent Advances in North American Paleoseismology and Neotectonics East of the Rockies, Spec. Pap. Geol. Soc. Am., v.493, p.203-219.
  6. Dalrymple, R.W. (1979) Wave-induced liquefaction: a modern example from the Bay of Fundy. Sedimentology, v.26, p.835-844. https://doi.org/10.1111/j.1365-3091.1979.tb00976.x
  7. Dobry, R. (1989) Some basic aspects of soil liquefaction during earthquakes. In Jacob, K.H., and Turkstra, C.J. (ed.), Earthquake Hazards and the Design of Constructed Facilities in the Eastern United States, Annals of the New York Academy of Sciences, v.558, p.172-182.
  8. Gawthorpe, R.L. and Leeder, M.R. (2000) Tectono-sedimentary evolution of active extension-al basins. Basin Research, v.12, p.195-218. https://doi.org/10.1046/j.1365-2117.2000.00121.x
  9. Galli, P. (2000) New empirical relationships between magnitude and distance for liquefaction. Tectonophysics, v.324, p.169-187. https://doi.org/10.1016/S0040-1951(00)00118-9
  10. Gihm, Y.S., Kim, S. W., Ko, K., Choi, J-H., Bae, H., Hong, P.S., Lee, Y., Lee, H., Jin, K., Choi, S.-J., Kim, J.C., Choi, M.S. and Lee, S.R. (2018) Paleoseismological implications of liquefaction-induced structures caused by the 2017 Pohang Earthquake: Geoscience Journal, v.22, p.871-880. https://doi.org/10.1007/s12303-018-0051-y
  11. Holzer, T.M. and Clark, M.M., (1993) Sand boils without earthquakes. Geology, 21, 873-876. https://doi.org/10.1130/0091-7613(1993)021<0873:SBWE>2.3.CO;2
  12. Ingersoll, R.V. and Busby, C.J. (1995) Tectonics of Sedimentary Basins. In Busby, C.J. and Ingersoll, R.V. (ed.), Tectonics of sedimentary basins. Blackwell Science, Cambridge, MA, p.1-51.
  13. Ishihara, K. (1985) Stability of natural soil deposits during earthquakes. Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, San Francisco, v.1, p.321-376.
  14. Kang, H.-C., Paik, I.S., Lee, H.I., Lee, J.E. and Chun, J.H. (2010) Soft-sediment deformation structures in Cretaceous non-marine deposits of southeastern Gyeongsang Basin, Korea: Occurrences and origin. Island Arc, v.19, p.628-646. https://doi.org/10.1111/j.1440-1738.2010.00738.x
  15. Ko, K., Kim, S.W., Lee, H.J., Hwang, I.G., Kim, B.C., Kee, W.-S., Kim, Y.-S. and Ghim, Y.S. (2017) Soft sediment deformation structures in a lacustrine sedimentary succession induced by volcano-tectonic activities: An example from the Cretaceous Beolgeumri Formation, Wido Volcanics, Korea. Sedimentary Geology, v.358, p.197-209. https://doi.org/10.1016/j.sedgeo.2017.07.008
  16. Ko, K., Park, S.-I. and Kwon, C.W. (2015) Soft-sediment deformation structures in the Cretaceous Gyeokpori Formation of the Buan area, Korea: Structural characteristics, reconstruction of paleoslope and triggering mechanism of slump. Journal of the Geological Society of Korea, v.51, p.545-560 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.6.545
  17. Lee, H.I., Paik, I.S. and Chun, J.H. (2010) Soft-sediment deformation structures in the Cretaceous Jinju Formation in the Sacheon area, Korea: occurrences and origin. Journal of the Geological Society of Korea, v.46, p.305-315 (in Korean).
  18. Lee, H.I., Paik, I.S., Kang, H.-C. and Chun, J.H. (2014) Occurrences and origins of soft-sediment deformation structures in the late Pleistocene marine terrace deposits of the southeastern coast of Korea. Geoscience Journal, v.18, p.149-165. https://doi.org/10.1007/s12303-013-0070-7
  19. Leeder, M.R. (1987) Sediment deformation structures and the palaeotectonic analysis of sedimentary basins, with a case-study from the Carboniferous of northern England. In Jones, M.E. and Preston, R.M.F. (ed.), Deformation of Sediments and Sedimentary Rocks: Geological Society, London, Special Publication, v.29, p.137-146.
  20. Li, Y., Craven, J., Schweig, E.S. and Obermeier, S.F. (1996) Sand boils induced by the 1993 Mississippi River flood: could they one day be misinterpreted as earthquake-induced liquefaction?. Geology, v.24, p.171-174. https://doi.org/10.1130/0091-7613(1996)024<0171:SBIBTM>2.3.CO;2
  21. Lowe, D.R. (1975) Water escape structures in coarse-grained sediments. Sedimentology, v.22, p.157-204. https://doi.org/10.1111/j.1365-3091.1975.tb00290.x
  22. Maltman, A.J. and Bolton, A. (2003) How sediments become mobilized. In Van Rensbergen, P., Hillis, R.R., Maltman, A.J. and Morley, C.K. (ed.), Subsurface Sediment Mobilization: Geological Society, London, Special Publications, v.216, p.9-20.
  23. Matsumoto, D., Naruse, H., Fujino, S., Surphawajruksakul, A., Jarupongsakul, T., Sakakura, N. and Murayama, M. (2008) Truncated flame structures within a deposit of the Indian Ocean Tsunami: evidence of syn-sedimentary deformation. Sedimentology, v.55, p.1559-1570. https://doi.org/10.1111/j.1365-3091.2008.00957.x
  24. Moretti, M. and Sabato, L. (2007) Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant'Arcangelo Basin (southern Italy): seismic shock vs. overloading. Sedimentary Geology, v.196, p.31-45. https://doi.org/10.1016/j.sedgeo.2006.05.012
  25. Moretti, M., Alfaro, P., Caselles, O. and Canas, J.A. (1999) Modelling seismites with a digital shaking table. Tectonophysics, v.304, p.369-383. https://doi.org/10.1016/S0040-1951(98)00289-3
  26. National Research Council (1985) Liquefaction of Soils during Earthquakes. National Academy Press, Washington, DC. 240p.
  27. Nichols, R.J., Sparks, R.S.J. and Wilson, C.J.N. (1994) Experimental studies of the fluidization of layered sediments and the formation of fluid escape structures. Sedimentology, v.41, p.233-253. https://doi.org/10.1111/j.1365-3091.1994.tb01403.x
  28. Obermeier, S.F. (1996) Use of liquefaction-induced features for paleoseismic analysis - an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology, v.44, p.1-76. https://doi.org/10.1016/S0013-7952(96)00040-3
  29. Obermeier, S.F. (2009) Using liquefaction-induced and other soft-sediment features for paleoseismic analysis. In McCalpin, J.P. (ed.), Paleoseismology, v.95, p.497-564.
  30. Obermeier, S.F., Olson, S.M. and Green, R.A. (2005) Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. Engineering Geology, v.76, p.209-234. https://doi.org/10.1016/j.enggeo.2004.07.009
  31. Owen, G. (1987) Deformation Processes in Unconsolidated Sands. In Jones, M.E. and Preston, R. M. F. (ed.), Deformation of sediments and sedimentary rocks. Geological Society Special Publications, v.29, p.11-24.
  32. Owen, G. (1996) Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology, v.43, p.279-293 https://doi.org/10.1046/j.1365-3091.1996.d01-5.x
  33. Owen, G. (2003) Load structures: gravity-driven sediment mobilization in the shallow subsurface. In Van Rensbergen, P., Hillis, R.R., Maltman, A.J. and Morley, C.K. (ed.), Subsurface Sediment Mobilization: Geological Society, London, Special Publications, v.216, p.21-34.
  34. Owen, G. and Moretti, M. (2011) Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology, v.235, p.141-147. https://doi.org/10.1016/j.sedgeo.2010.10.003
  35. Owen, G., Moretti, M. and Alfaro, P. (2011) Recognising triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology, v.235, p.133-140. https://doi.org/10.1016/j.sedgeo.2010.12.010
  36. Posamentier, H.W. and Walker, R.G. (2006) Deep-water turbidites and submarine fans. In Posamentier, H.W. and Walker, R.G. (ed.), Facies Models Revisited. Special Publication, Society for Sedimentary Geology (SEPM), v.84, p.397-520.
  37. Rajendran, K., Rajendran, C.P., Thakker, M., and Tuttle, M.P. (2001) The 2001 Kachchh (Bhuj) earthquake: coseismic surface features and their significance. Current Science, v.80, p.1397-1405.
  38. Rodriguez-Pascua, M.A., Calvo, J.P., de Vicente, G. and Gomez-Gras, D. (2000) Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology. v.135, p.117-135. https://doi.org/10.1016/S0037-0738(00)00067-1
  39. Rodriguez-Lopez, J.P., Merlendez, N., Soria, A.R., Liesa, C.L. and Van Loon, A.J. (2007) Lateral variability of ancient seismites related to differences in sedimentary facies (the syn-rift Escucha Formation, mid-Cretaceous, Spain). Sedimentary Geology, v.201, p.461-484. https://doi.org/10.1016/j.sedgeo.2007.07.009
  40. Sims, J.D. (1975) Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics, v.29, p.141-152. https://doi.org/10.1016/0040-1951(75)90139-0
  41. Seed, H.B. (1968) Landslides during earthquakes due to soil liquefaction. J. Soil Mech. Found. Eng. Div., Am. Soc. Civil Engineers, v.94, p.1055-1122.
  42. Seed, H.B. and Idriss, I.M. (1967) Analysis of soil lquifaction: Niigata earthquake. J. Soil Mech. Found., ASCE SM3, v.93 p.83-108. https://doi.org/10.1061/JSFEAQ.0000981
  43. Seed, H.B., Idriss, I.M. and Arango, I. (1983) Evaluation of liquefaction potential using field performance data. J Geotech. Eng., Am. Soc. Civil Engineers, v.109, p.458-482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458)
  44. Terzaghi, K. and Peck, R.B. (1967) Soil Mechanics in Engineering Practice (2nd ed.) John Wiley, New York. 729p.
  45. Toro, B. and Pratt, B.R. (2016) Sedimentary record of seismic events in the Eocene Green iver Formation and its implications for regional tectonics on lake evolution Bridger Basin, Wyoming). Sedimentary Geology. v.344, p.175-204. https://doi.org/10.1016/j.sedgeo.2016.02.003
  46. Torrance, J.K. (1983) Towards a general model of quick clay development. Sedimentology, v.30, p.547-555. https://doi.org/10.1111/j.1365-3091.1983.tb00692.x
  47. Tsuchida, H. and Hayashi, S. (1971) Estimation of liquefaction potential of sandy soils. Proceedings of the Third Joint Meeting, US-Japan Panel on Wind and Seismic Effects, UJNR, Tokyo, p.91-109.
  48. Tuttle, M.P., Schweig, E.S., Sims, J.D., Lafferty, R.H., Wolf, L.W., and Haynes, M.L. (2002) The earthquake potential of the New Madrid seismic zone. Bulletin of the Seismological Society of America, v.92, p.2080-2089. https://doi.org/10.1785/0120010227
  49. Valera, J.E., Traubenik, M.L., Egan, J.A. and Kaneshiro, J.Y. (1994) A practical perspective on liquefaction of gravels. In S. Prakash and P. Dakoulas (ed.), Ground Failures Under Seismic Conditions. Am. Soc. Civil Engineers Geotech. Special Publication, v.44, p.241-257.
  50. van Loon, A.J. (2009) Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos, v.15, p.3-55.
  51. Wheeler, R.L. (2002) Distinguishing seismic from nonseismic soft-sediment structures: criteria from seismic-hazard analysis. In: Ettensohn, F.R., Rast, N., Brett, C.E. (Eds.), Ancient Seismites: Geological Society of America, Special Paper, 359, pp. 1-11.
  52. Youd, T.L. (1984) Geologic effects - Liquefaction and associated ground failure. Open-File Report 84-760 (U.S. Geological Survey), pp. 210-232.