DOI QR코드

DOI QR Code

Improvement of Pervaporative Water Flux of Mordenite Zeolite Membrane by Controlling Membrane Thickness

분리막 두께 조절에 의한 모데나이트 제올라이트 분리막의 투과증발 물 투과유속 증진 연구

  • Yoon, Byung-jin (Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Kim, Young-mu (Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Lee, Du-Hyoung (Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Cho, Churl-Hee (Graduate School of Energy Science and Technology (GEST), Chungnam National University)
  • 윤병진 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 김영무 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 이두형 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 조철희 (충남대학교 에너지과학기술대학원 에너지과학기술학과)
  • Received : 2019.10.21
  • Accepted : 2019.10.28
  • Published : 2019.10.31

Abstract

In the present study, thickness of MOR zeolite membranes was controlled by changing seed size, seeding amount, and aging time of hydrothermal solution, and then effect of membrane thickness on pervaporative ethanol dehydration for 90 wt.% ethanol-water mixture was investigated. First, nanosize MOR zeolite seeds with a diameter of 20 to 30 nm was successfully prepared by planetary milling a laboratory synthesized MOR zeolites and the coating amount was controlled by seed concentration and infiltration volume of coating solution during vacuum-assisted seeding. As seeding amount decreased, membrane thickness was reduced up to around $4{\mu}m$. The MOR zeolite membrane having a thickness of $4{\mu}m$ showed a water/ethanol separation factor of 760 and water flux of $1.0kg/m^2h$. The excellent water flux was due to the reduced membrane thickness which was derived from the nanosize seed. Therefore, it could be concluded that membrane thickness control by using nanosize seed can be a crucial factor to improve pervaporative water flux of MOR zeolite membrane.

본 연구에서는 종결정 크기, 종결정 코팅양, 수열 용액 숙성시간을 조절함으로써 분리층 두께가 제어된 모데나이트 제올라이트 분리막을 제조하고, 분리층 두께가 투과증발 물 투과유속에 미치는 영향을 90 wt.% 에탄올 수용액에서 고찰하였다. 유성 밀을 이용해 종결정을 분쇄시켜 20~30 nm 크기의 종결정을 제조하였고, 진공여과코팅 중에 종결정 용액의 농도와 통과된 양을 바꿔주면서 코팅양을 조절하였다. 제조된 분리막은 분리층 두께가 얇을수록 더 높은 물 투과유속을 나타내었으며, 약 $4{\mu}m$ 두께를 갖는 분리막의 경우, 760의 높은 물/에탄올 선택도와 $1.0kg/m^2h$의 높은 물 투과유속을 나타내었다. 이는 나노크기 종결정을 사용하여 $4{\mu}m$ 두께로 분리층을 얇게 만들었기 때문으로 판단된다. 따라서 본 연구로부터 종결정의 크기와 진공여과 코팅양, 수열 용액 숙성시간을 조절하는 것은 분리 층의 두께를 효과적으로 조절할 수 있는 방법임을 알았다. 또한, 모데나이트 제올라이트 분리층의 두께를 얇게 하는 것이 분리막의 물 투과유속을 증진시키는 중요한 방법임을 확인하였다.

Keywords

References

  1. A. A. Alomair, M. Sama, A. Jubouri, and M. Holmes, "A novel approach to fabricate zeolite membranes for pervaporation processes", J. Mater. Chem. A., 3, 9799 (2015). https://doi.org/10.1039/C5TA00124B
  2. F. Xian, Y. Robert, and M. Huang, "Liquid separation by membrane pervaporatio: A review", Ind. Eng. Chem. Res., 36, 1048 (1997). https://doi.org/10.1021/ie960189g
  3. J. Caro, M. Noack, P. Kolsch, and R. Schafer, "Zeolite membranes - State of their development and perspective", Micropor. Mesopor. Mater., 38, 3 (2000). https://doi.org/10.1016/S1387-1811(99)00295-4
  4. F. Zhang, Y. Zheng, L. Hu, N. Hu, M. Zhu, R. Zhou, X. Chen, and H. Kita, "Preparation of high-flux zeolite T membranes using reusable macroporous stainless steel supports in fluoride media", J. Membr. Sci., 456, 107 (2014). https://doi.org/10.1016/j.memsci.2014.01.023
  5. S. Basak, D. Kundu, and M. K. Naskar, "Low temperature synthesis of NaA zeolite membranes: The effect of primary and secondary crystallizations", Ceram. Int., 40, 12923 (2014). https://doi.org/10.1016/j.ceramint.2014.04.152
  6. D. Kunnakorn, T. Rirksomboon, P. Aungkavattana, N. Kuanchertchoo, D. Atong, K. Hemra, S. Kulprathipanja, and S. Wongkasemjit, "Optimization of synthesis time for high performance of NaA zeolite membranes synthesized via autoclave for water-ethanol separation", Desalination, 280, 259 (2011). https://doi.org/10.1016/j.desal.2011.07.003
  7. W. J. Oh, J. C. Jung, J. G. Yeo, J. H. Lee, H. U. Kim, Y. C. Park, D. H. Lee, J. H. Moon, and C. H. Cho, "Pervaporation of binary water/methanol and water/butanol mixtures through zeolite 4a membranes: Expriments and modeling", Membr. J., 27, 487 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.487
  8. I. A. Yum, M. H. Yun, and Y. T. Lee, "Pervaporation characteristics of ion-exchanged naa type zeolite membranes", Membr. J., 19, 189 (2009).
  9. Y. Morigami, M. Kondo, J. Abe, H. Kita, and K. Okamoto, "The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane", Sep. Purif. Technol., 25, 251 (2001). https://doi.org/10.1016/S1383-5866(01)00109-5
  10. Y. Congli, L. Yanmei, C. Gangling, G. Xuehong, and X. Weihong, "Pretreatment of isopropanol solution from pharmaceutical industry and pervaporation dehydration by NaA zeolite membranes", Sep. Sci. Eng., 19, 904 (2011).
  11. Y. Cao, M. Wang, Z. Xu, X. Ma, and S. Xue, "A novel seeding method of interfacial polymerization- assisted dip coating for the preparation of zeolite NaA membranes on ceramic hollow fiber supports", ACS Appl. Mater. Interfaces, 8, 25386 (2016). https://doi.org/10.1021/acsami.6b08092
  12. M. Kondo, M. Komori, H. Kita, and K. Okamoto, "Tubular-type pervaporation module with zeolite NaA membrane", J. Membr. Sci., 133, 133 (1997). https://doi.org/10.1016/S0376-7388(97)00087-2
  13. Y. Cao, Y. X. Li, M. Wang, Z. L. Xu, Y. M. Wei, B. J. Shen, and K. K. Zhu, "High-flux NaA zeolite pervaporation membranes dynamically synthesized on the alumina hollow fiber inner-surface in a continuous flow system", J. Membr. Sci., 570, 445 (2019). https://doi.org/10.1016/j.memsci.2018.10.043
  14. H. Li, J. Wang, J. Xu, X. meng, B. Xu, J. Yang, S. Li, J. Lu, Y. Zhang, X. He, and D. Yin, "Synthesis of zeolite NaA membranes with high perfomance and high reproducibility on coarse macroporous supports", J. Membr. Sci., 444, 513 (2013). https://doi.org/10.1016/j.memsci.2013.04.030
  15. L. Lai, J. Shao, Q. Ge, Z. Wang, and Y. Yan, "The preparation of zeolite NaA membranes on the inner surface of hollow fiber supports", J. Membr. Sci., 409, 318 (2012). https://doi.org/10.1016/j.memsci.2012.03.068
  16. Z. Zhan, N. Ma, H. Yan, Y. Peng, Z. Wang, and Y. Yan, "Heat treatment for improving performance of inner-side zeolite NaA membranes on composite hollow fibers", J. Membr. Sci., 485, 94 (2015). https://doi.org/10.1016/j.memsci.2015.03.024
  17. K. Okamoto, H. Kita, K. Horii, and K. Tanaka, "Zeolite NaA membrane: Preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures", Ind. Eng. Chem. Res., 40, 163 (2001). https://doi.org/10.1021/ie0006007
  18. F. Qu, R. Shi, L. Peng, Y. Zhang, X. Gu, X. Wang, and S. Murad, "Understanding the effect of zeolite crystal expansion/contraction on separation performance of NaA zeolite membrane: A combined experimental and molecular simulation study", J. Membr. Sci., 539, 14 (2017). https://doi.org/10.1016/j.memsci.2017.05.057
  19. S. G. Sorenson, E. A. Payzant, W. T. Gibbons, B. Soydas, H. Kita, R. D. Noble, and J. L. Falconer, "Influence of zeolite crystal expansion/contraction on NaA zeolite membrane separations", J. Membr. Sci., 366, 413 (2011). https://doi.org/10.1016/j.memsci.2010.10.043
  20. K. Sawamura, T. Furuhata, Y. Sekine, E. Kikuchi, B. Subramanian, and M. Matsukata, "Zeolite membrane for dehydration of isopropylalcohol-water mixture by vapor permeation", ACS. Appl. Mater. Interfaces, 7, 13728 (2015). https://doi.org/10.1021/acsami.5b04085
  21. L. Casado, R. Mallada, C. Tellez, J. Coronas, M. Menendez, and J. Santamaria, "Preparation, characterization and pervaporation performance of mordenite membranes", J. Membr. Sci., 216, 135 (2003). https://doi.org/10.1016/S0376-7388(03)00065-6
  22. Y. Li, M. Zhu, N. Hu, F. Zhang, T. Wu, X. Chen, and H. Kita, "Scale-up of high performance mordenite membranes for dehydration of water-acetic acid mixtures", J. Membr. Sci., 564, 174 (2018). https://doi.org/10.1016/j.memsci.2018.07.024
  23. Y. M. Kim, D. H. Lee, M. Z. Kim, and C. H. Cho, "Preparation and pervaporative alcohol dehydration of crystallographically b/c-axis oriented mordenite zeolite membranes", Membr. J., 28, 340 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.340
  24. G. Li, E. Kikuchi, and M. Matcukata, "Separation of water-acetic acid mixuters by prevaporation using a thin mordenite membrane", Sep. Purif. Technol., 32, 199 (2003). https://doi.org/10.1016/S1383-5866(03)00035-2
  25. X. Li, H. Kita, H. Zhu, Z. Zhang, and K. Tanaka, "Synthesis of long-term acid-stable zeolite membranes and their potential application to esterification reactions", J. Membr. Sci., 339, 224 (2009). https://doi.org/10.1016/j.memsci.2009.04.054
  26. L. Li, J. Yang, J. Li, P. Han, J. Wang, Y. Zhao, J. Wang, J. Lu, D. Yin, and Y. Zhang, "Synthesis of high performance mordenite membranes from fluoride- containing dilute solution under microwave-assisted heating", J. Membr. Sci., 512, 83 (2016). https://doi.org/10.1016/j.memsci.2016.03.056
  27. P. K. Bajpai, "Synthesis of mordentie type zeolite", Zeolites, 6, 86 (1986). https://doi.org/10.1016/0144-2449(86)90002-3
  28. A. S. T. Chiang and K. Chao, "Membranes and films of zeolite and zeolite-like materials", J. Phys. Chem. Sol., 62, 1899 (2001). https://doi.org/10.1016/S0022-3697(01)00122-6
  29. A. Tavolaro and E. Drioli, "Zeolite membranes", Adv. Mater., 11, 975 (1999). https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<975::AID-ADMA975>3.0.CO;2-0
  30. J. Coronas and J. Santamaria, "Separations using zeolite membranes", Sep. Purif. Methods, 28, 127 (1999). https://doi.org/10.1080/03602549909351646
  31. M. Matsukata and E. Kikuchi, "Zeolitic membranes: Synthesis, properties, and prospects", Chem. Soc. Jpn., 70, 2341 (1997). https://doi.org/10.1246/bcsj.70.2341
  32. J. D. F. Ramsay and S. Kallus, "Zeolite membranes", Membr. Sci. Technol., 6, 373 (2000). https://doi.org/10.1016/S0927-5193(00)80016-9
  33. G. Li, X. Su, and R. Lin, "Preparation of highly water-selective mordenite membranes via post-synthetic treatment with oxalic acid", Mater. Lett., 61, 4576 (2007). https://doi.org/10.1016/j.matlet.2007.02.054
  34. R. Zhou, Z. Hu, N. Hu, L. Duan, X. Chen, and H. Kita, "Preparation and microstructural analysis of high-performance mordenite membranes in fluoride media", Micropor. Mesopor. Mater., 156, 166 (2012). https://doi.org/10.1016/j.micromeso.2012.02.023
  35. C. Chen, Y. Cheng, L. Peng, C. Zhang, Z. Wu, X. Gu, X. Wang, and S. Murad, "Fabrication and stability exploration of hollow fiber mordenite zeolite membranes for isopropanol/water mixture separation", Micropor. Mesopor. Mater., 274, 347 (2019). https://doi.org/10.1016/j.micromeso.2018.09.010
  36. M. C. Lovallo and M. Tsapatsis, "Preparation of an asymmetric zeolite L film", Chem. Mater., 8, 1579 (1996). https://doi.org/10.1021/cm960037b
  37. L. C. Boudreau, J. A. Kuck, and M. Tsapatsis, "Deposition of oriented zeolite A films: In situ and secondary growth", J. Membr. Sci., 152, 41 (1999). https://doi.org/10.1016/S0376-7388(98)00166-5
  38. J. Hedlund, S. Mintova, and J. Sterte, "Controlling the preferred orientation in silicalite-1 films synthesized by seeding", Micropor. Mesopor. Mater., 28, 185 (1999). https://doi.org/10.1016/S1387-1811(98)00300-X
  39. R. Lai and G. R. Gavalas, "Surface seeding in ZSM-5 membrane preparation", Ind. Eng. Chem. Res., 37, 4275 (1998). https://doi.org/10.1021/ie980265a
  40. X. Zhang, H. Liu, and K. L. Yeung, "Influence of seed size on the formation and microstructure of zeolite silicalite-1 membranes by seeded growth", Mater. Chem. Phys., 96, 42 (2006). https://doi.org/10.1016/j.matchemphys.2005.06.031
  41. A. Huang, Y. S. Lin, and W. Yang, "Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding", J. Membr. Sci., 245, 41 (2004). https://doi.org/10.1016/j.memsci.2004.08.001
  42. D. H. Lee, S. F. Alam, H. R. Lee, P. Sharma, C. H. Cho, and M. H. han, "Template-free hydrothermal synthesis of high phase purity mordenite zeolite particles using natural zeolite seed for zeolite membrane preparation", Membr. J., 26, 381 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.381
  43. Y. M. Kim, D. H. Lee, M. Z. Kim, and C. H. Cho, "Preparation and pervaporative alcohol dehydration of crystallographically b/c-axis oriented mordenite zeolite membranes", Membr. J., 28, 340 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.340
  44. E. K. Solak and O. Sanli, "Separation characteristics of dimethylformamide/water mixtures through alginate membranes by pervaporation, vapor permeation and vapor permeation with temperature difference methods", Sep. Sci. Technol., 41, 627 (2006). https://doi.org/10.1080/01496390500526789
  45. E. K. Solak and O. Sanli, "Separation characteristics of dimethylformamide/water mixtures using sodium alginate-g-N-vinyl-2-pyrrolidone membranes by pervaporation method", Chem. Eng. Process., 47, 633 (2008). https://doi.org/10.1016/j.cep.2006.12.001
  46. F. Liu, L. Liu, and X. Feng, "Separation of acetone- butanol-ethanol (ABE) from dilute aqueous solutions by pervaporation", Sep. Purif. Technol., 42, 273 (2005). https://doi.org/10.1016/j.seppur.2004.08.005
  47. Q. Zhao, J. Qian, Q. An, Z. Zhu, P. Zhang, and Y. Bai, "Studies on pervaporation characteristics of polyacrylonitrile-b-poly (ethylene glycol)-b-polyacrylonitrile block copolymer membrane for dehydration of aqueous acetone solutions", J. Membr. Sci., 311, 284 (2008). https://doi.org/10.1016/j.memsci.2007.12.023
  48. A. Navajas, R. Mallada, C. Tellez, J. Coronas, M. Menendez, and J. Santamaria, "Preparation of mordenite membranes for pervaporation of water-ethanol mixtures", Desalination, 148, 25 (2002). https://doi.org/10.1016/S0011-9164(02)00648-3
  49. A. Navajas, R. Mallada, C. Tellez, J. Coronaas, M. Menendez, and J. Santamaria, "Study on reproducibility of mordenite tubular membranes used in the dehydration of ethanol", J. Membr. Sci., 299, 166 (2007). https://doi.org/10.1016/j.memsci.2007.04.038
  50. A. Navajas, R. Mallada, C. Tellez, J. Coronaas, M. Menendez, and J. Santamaria, "The use of post-synthetic treatments to improve the pervaporation performance of mordenite membranes", J. Membr. Sci., 270, 32 (2006). https://doi.org/10.1016/j.memsci.2005.06.038