DOI QR코드

DOI QR Code

Fine Dust Suppression by Enzyme Induced Carbonate Precipitation: Indoor Experiment and Field Application

EICP에 의한 미세먼지 억제: 실내 실험 및 현장 적용

  • 송준영 (연세대학교 건설환경공학과) ;
  • 하성준 (연세대학교 건설환경공학과) ;
  • 심영종 (한국토지주택공사 토지주택연구원 건설환경연구실) ;
  • 진규남 (한국토지주택공사 토지주택연구원 건설환경연구실) ;
  • 윤태섭 (연세대학교 건설환경공학과)
  • Received : 2019.09.26
  • Accepted : 2019.10.07
  • Published : 2019.10.31

Abstract

The efficiency of suppressing fine dust was evaluated by conducting indoor and field experiments for the ground treated with EICP solution, which is an eco-friendly ground improvement method. In laboratory experiments, the EICP solution was prepared with inexpensive materials for the field applicability, and the optimal mixing ratio and optimal spraying volume of EICP solution were calculated. The optimum amount of calcium carbonate was shown when the ratio of urea/calcium chloride and white powder were 1.5 and 15 g/L, respectively. The optimum spraying amount of the EICP solution was $7L/m^2$ determined by fine dust suppression and cone tip resistance experiments. The spraying of water and EICP solution was conducted at the test-bed where dump trucks pass for the effect of suppressing fine dust of each method. The effective fine dust suppression method can be chosen depending on the situation of the site.

친환경 지반개량공법인 EICP 처리를 통해 실내 및 현장 실험을 실시하여 미세먼지 억제 효율을 평가하였다. 실내 실험에서는 현장 적용성을 고려하여 저렴한 물질로 EICP 용액을 제작하였으며, EICP 용액의 최적 혼합비 및 처리량을 산정하였다. 용액의 최적 혼합비는 요소/염화칼슘의 비율이 1.5 및 백태가루 15g/L일 경우, 최적의 탄산칼슘 생성량을 보였다. EICP 용액 최적 처리량은 $7L/m^2$이며, 미세먼지 억제 실험 및 콘팁저항치 측정 실험을 통해 결정되었다. 현장 실험은 덤프트럭이 통행하는 test-bed에서 살수 실험 및 EICP 실험을 각각 실시하였으며, 현장의 상황에 따라 효율적인 미세먼지 억제법은 달라질 것으로 판단된다.

Keywords

References

  1. Al Omari, M.M.H., Rashid, I.S., Qinna, N.A., Jaber, A.M., and Badwan, A.A. (2016), Calcium carbonate, In Profiles of drug substances, excipients and related methodology, Vol.41, pp.31-132.
  2. Brauer, M., Amann, M., Burnett, R. T., Cohen, A., Dentener, F., Ezzati, M., Henderson, S.B., Krzyzanowski, M., Martin, R., Dingenen, R.V., van Donkelaar, A., and Thurston, G.D. (2012), Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution, Environmental science & technology, Vol. 46, No.2, pp.652-660. https://doi.org/10.1021/es2025752
  3. Gordian, M.E., Ozkaynak, H., Xue, J., Morris, S.S., and Spengler, J.D. (1996), Particulate air pollution and respiratory disease in Anchorage, Alaska, Environmental Health Perspectives, Vol.104, No.3, pp.290-297. https://doi.org/10.1289/ehp.96104290
  4. Gu, A., Teng, F., and Lv, Z. (2016), Exploring the nexus between water saving and energy conservation: Insights from industry sector during the 12th Five-Year Plan period in China, Renewable and Sustainable Energy Reviews, Vol.59, pp.28-38. https://doi.org/10.1016/j.rser.2015.12.285
  5. Guaita, R., Pichiule, M., Maté, T., Linares, C., and Díaz, J. (2011), Short-term impact of particulate matter (PM2.5) on respiratory mortality in Madrid, International journal of environmental health research, Vol.21, No.4, pp.260-274. https://doi.org/10.1080/09603123.2010.544033
  6. Guo, P., Wang, J., Li, X., Zhu, J., Reinert, T., Heitmann, J., Spemann, D., Vogt, J., Flagmeyer, R.H., and Butz, T. (2000), Combination of micro-PIXE with the pattern recognition technique for the source identification of individual aerosol particles, Applied Spectroscopy, Vol.54, No.6, pp.807-811. https://doi.org/10.1366/0003702001950427
  7. Hamdan, N. and Kavazanjian Jr, E. (2016), Enzyme-induced carbonate mineral precipitation for fugitive dust control, Geotechnique, Vol. 66, No.7, pp.546-555. https://doi.org/10.1680/jgeot.15.P.168
  8. Li, X., Zhu, Y., and Zhang, Z. (2010), An LCA-based environmental impact assessment model for construction processes, Building and Environment, Vol.45, No.3, pp.766-775. https://doi.org/10.1016/j.buildenv.2009.08.010
  9. Maleki, M., Ebrahimi, S., Asadzadeh, F., and Tabrizi, M.E. (2016), Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil, International journal of environmental science and technology, Vol.13, No.3, pp.937-944. https://doi.org/10.1007/s13762-015-0921-z
  10. National Institute of Environmental Research. (2015), 2013 national air pollution emission, Korea National Institute of Environmental Research, Incheon, Korea, Publication No. 11-1480523-000883-10.
  11. Song, J.Y., Sim, Y., Jin, K.N., and Yun, T.S. (2017), Evaluation of soil improvement by carbonate precipitation with urease, Journal of the Korean Geotechnical Society, Vol.33, No.9, pp.61-69. https://doi.org/10.7843/kgs.2017.33.9.61
  12. United States Environmental Protection Agency (1996), AP-42: Compilation of Air Emissions Factors, AP 42 Fifth Edition, Vol.1, Point Area Sources 44.
  13. Wang, X., Kong, R., Pan, X., Xu, H., Xia, D., Shan, H., and Lu, J.R. (2009), Role of ovalbumin in the stabilization of metastable vaterite in calcium carbonate biomineralization, The Journal of Physical Chemistry B, Vol.113, No.26, pp.8975-8982. https://doi.org/10.1021/jp810281f
  14. Wu, Z., Zhang, X., and Wu, M. (2016), Mitigating construction dust pollution: State of the art and the way forward. Journal of cleaner production, Vol.112, pp.1658-1666. https://doi.org/10.1016/j.jclepro.2015.01.015
  15. Zereini, F., Alt, F., Messerschmidt, J., Wiseman, C., Feldmann, I., Von Bohlen, A., Muller, J., Liebl, K., and PUttmann, W. (2005), Concentration and distribution of heavy metals in urban airborne particulate matter in Frankfurt am Main, Germany, Environmental science & technology, Vol.39, No.9, pp.2983-2989. https://doi.org/10.1021/es040040t