DOI QR코드

DOI QR Code

Mechanical Properties for Processing Parameters of Thermoplastic Composite Using Automated Fiber Placement

자동 섬유 적층(AFP)을 활용한 열가소성 복합재의 공정 변수에 따른 기계적 물성 평가

  • Sung, Jung-Won (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Choe, Hyeon-Seok (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Kwon, Bo-Seong (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Oh, Se-Woon (Korea Aerospace Industries, Ltd.) ;
  • Lee, Sang-Min (Korea Aerospace Industries, Ltd.) ;
  • Nam, Young-Woo (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Kweon, Jin-Hwe (School of Mechanical and Aerospace Engineering, Gyeongsang National University)
  • Received : 2019.10.15
  • Accepted : 2019.10.31
  • Published : 2019.10.31

Abstract

In this study, the effects of the additional processing parameters on the mechanical properties of thermoplastic composites fabricated with automated fiber placement (AFP) were evaluated. Annealing and vacuum bag only processes were then performed on the manufactured thermoplastic composites, respectively. For verification, the crystallinity was measured by differential scanning calorimetry (DSC), confirming the variation of semi-crystalline thermoplastic composite according to the process conditions. The void content of thermoplastic composites was evaluated by matrix digestion method while microscopic examination confirmed the porosity distribution. The interlaminar shear strength test was conducted for three different process parameters (VBO, annealing, and no treatment). A comparison of the three tested strengths was made, revealing that the porosity value had larger effect on the mechanical properties of the thermoplastic composite compared to the degree of crystallinity. Additionally, when thermoplastic composite melted up, the pores were continuously removed under vacuum process; the removal of the pores resulted in an increase of the interlaminar shear strength.

본 연구에서는 자동 섬유 적층(AFP) 장비로 제작한 열가소성 복합재에 대하여 추가 공정을 수행한 후 기계적 물성에 미치는 영향을 평가하였다. 제작을 위한 기초 연구로써 AFP의 공정 변수를 통해 열가소성 복합재를 제작하였으며 제작된 열가소성 복합재에 어닐링(Annealing) 및 진공백(Vacuum bag only) 공정을 수행하였다. 추가 공정 후 검증을 위해 결정화도 및 기공률 측정을 수행하였다. 결정화도는 시차 주사 열량 측정법(Differential scanning calorimetry)을 통해 측정하였으며 반 결정 구조인 열가소성 복합재의 공정 조건에 따른 결정화도 변화를 확인하였다. 기공률 측정을 위해 수지 용해를 수행하였으며 현미경 촬영을 통해 기공 분포를 확인하고 수지 용해법을 통해 기공률을 계산하여 공정 조건에 따른 기공률 변화를 관찰하였다. 검증 후 수행한 층간 전단 강도 시험 결과 AFP로 제작한 열가소성 복합재의 경우 결정화도 보다 기공률 값이 기계적 물성에 더 많은 영향을 미쳤다. 또한 진공백 공정을 통해 열가소성 복합재를 녹는점까지 도달시켰으며 진공상태에서 지속적으로 열가소성 복합재 내의 기공을 제거함에 따라 층간 전단 강도가 증가하는 것을 확인하였다.

Keywords

References

  1. Luigi, S., Davi, S.V., Marco, D., Fabrizio, S., and Jacopo, T., "Effect of Temperature on Static and Low Velocity Impact Properties of Thermoplastic Composites," Composites Part B, Vol. 113, 2017, pp. 100-110. https://doi.org/10.1016/j.compositesb.2017.01.010
  2. Bo, X., Sha, Y., Yang, W., Hongfu, L., Boming, Z., and Robert, O.R., "Long-fiber Reinforced Thermoplastic Composite Lattice Structures: Fabrication and Compressive Properties," Composites Part A, Vol. 97, 2017, pp. 41-50. https://doi.org/10.1016/j.compositesa.2017.03.002
  3. Kuklinski, M., "Influence of Voids and Layers Number on Mechanical Properties of Hand Lay-up Bended Laminates," Journal of Polish CIMAC, 2011.
  4. Grouve, W.J.B., Warnet, L.L., Rietman, B., Visser, H.A., and Akkerman, R., "Optimization of the Tape Placement Process Parameters for Carbon-PPS Composites," Composites Part A, Vol. 50, 2013, pp. 44-53. https://doi.org/10.1016/j.compositesa.2013.03.003
  5. Centea, T., Grunenfelder, L. K., and Nutt, S. R., "A Review of Out-of-autoclave Prepregs-Material Properties, Process Phenomena, and Manufacturing Considerations," Composites Part A, Vol. 70, 2015, pp. 132-154. https://doi.org/10.1016/j.compositesa.2014.09.029
  6. Kim, Y.I., and Choi, S.M., "Application of Composites on Korean Aircraft Program," Composite Research, Vol. 16, No. 1, 2003, pp. 68-74.
  7. Shim, J.Y., Jung, K.W., Lee, H.Y., Lee, S.K., Hwang, G.C., and Ahn, S.M., "KC-100 Full-scale Airframe Static Test," International Journal of Aeronautical and Space Sciences, Vol. 42, No. 1, 2014, pp. 67-75.
  8. Saenz-Castillo, D., Martin, M.I., Calvo, S., Rodriguez-Lence, F., and A. Guemes, "Effect of Processing Parameters and Void Content on Mechanical Properties and NDI of Thermoplastic Composites," Composites Part A, Vol. 121, 2019, pp. 308-320. https://doi.org/10.1016/j.compositesa.2019.03.035
  9. Qureshi, Z., Swait, T., Scaife, R., and El-Dessouky, H.M., "In Situ Consolidation of Thermoplastic Prepreg Tape Using Automated Tape Placement Technology: Potential and Possibilites," Composites Part B, Vol. 66, 2014, pp. 255-267. https://doi.org/10.1016/j.compositesb.2014.05.025
  10. Comer, A.J., Ray, D., Obande, W.O., Jones, D., Lyons, J., Rosca, I., O' Higgins, R.M., and McCarthy, M.A., "Mechanical Characterisation of Carbon Fibre-PEEK Manufactured by Laser-Assisted Automated-Tape-Placement and Autoclave," Composite Part A, Vol. 69, 2015, pp. 10-20. https://doi.org/10.1016/j.compositesa.2014.10.003
  11. Bandaru, A.K., Clancy, G., Peeters, D., O'Higgins, R.M., and Weaver, P.M., "Properties of a Thermoplastic Composite Skin-Stiffener Interface in a Stiffened Structure Manufactured by Laser-Assisted Tape Placement with in Situ Consolidation," Composite Structures, Vol. 214, 2019, pp. 123-131. https://doi.org/10.1016/j.compstruct.2019.02.011
  12. Kim, J.H., Han, J.S., Bae B.H., Choi, J.H., Kweon, J.H., "Manufacturing and Structural Analysis of Thick Composite Spar Using AFP Machine," Composite Research, Vol. 28, No. 4, 2015, pp. 212-218. https://doi.org/10.7234/composres.2015.28.4.212
  13. Park, D.C., Park, C.W., Shin, D.H., and Kim Y.H., "A Study on Crystallization of Thermoplastic Aromatic Polymer," Composite Research, Vol. 31, No. 2, 2018, pp. 63-68. https://doi.org/10.7234/COMPOSRES.2018.31.2.063
  14. Gao S.L., and Kim J.K., "Cooling Rate Influences in Carbon Fibre/PEEK Composites. Part 1. Crystallinity and Interface Adhesion," Compos Part A, Vol. 31, Iss. 6, 2000, pp. 517-530. https://doi.org/10.1016/S1359-835X(00)00009-9
  15. Ayman, A.A., "Heat Treatment of Polymers: A Review", International Journal of Materials Chemistry and Physics, Vol. 1, No. 2, 2015, pp. 132-140.
  16. ASTM D3171. Standard Test Methods for Constituent Content of Composite Materials.
  17. ASTM D792. Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement.
  18. Little, J.E., Yuan, X., and Jones, M.I., "Characterisation of Voids in Fibre Reinforced Composite Materials," NDT & E International, Vol. 46, 2012, pp. 122-127. https://doi.org/10.1016/j.ndteint.2011.11.011
  19. ASTM D3418. Standard Test Method for Transition Temperatures of Polymers By Differential Scanning Calorimetry.
  20. ASTM D2344. Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates.