DOI QR코드

DOI QR Code

Prediction and Evaluation of Progressive Failure Behavior of CFRP using Crack Band Model Based Damage Variable

Crack Band Model 기반 손상변수를 이용한 탄소섬유강화 복합재료 적층판의 점진적 파손 거동 예측 및 검증

  • Yoon, Donghyun (Department of Mechanical Engineering, Chungnam National University) ;
  • Kim, Sangdeok (Department of Mechanical Engineering, Chungnam National University) ;
  • Kim, Jaehoon (Department of Mechanical Engineering, Chungnam National University) ;
  • Doh, Youngdae (HANKUK FIBER GROUP)
  • Received : 2019.07.22
  • Accepted : 2019.10.10
  • Published : 2019.10.31

Abstract

In this paper, a progressive failure analysis method was developed using the Hashin failure criterion and crack band model. Using the failure criterion, the failure initiation was evaluated. If the failure initiation is occurred, the damage variables at each failure modes (fiber tension & compression, matrix tension & compression) was calculated according to linear softening degradation behavior and the variables are used to derive the damaged stiffness matrix. The damaged stiffness matrix is reflected to damaged material and the progressive failure analysis is continued until the damage variables to be 1 that complete failure of material. A series of processes were performed using FE commercial code ABAQUS with user defined material subroutine (UMAT). To evaluate the proposed progressive failure model, the experimental results of open hole composite laminate tests was compared with numerical result. Using digital image correlation system, the strain behavior also was compared. The proposed numerical results were coincided well with the experimental results.

본 논문에서는 Hashin 파손 기준식과 crack band 모델이 접목된 손상변수를 이용하여 점진적파손해석 방법이 개발되었다. 파손기준식을 이용하여 파손의 개시 유무가 판단된다. 파손이 개시된 경우에는 각 파손모드(섬유 인장/압축, 기지 인장/압축)에서 손상변수가 선형 열화 거동에 따라 계산되고, 손상강성행렬을 계산하는데 사용된다. 손상강성행렬은 손상된 재료에 반영되고, 계산된 손상강성행렬을 이용하여 재료의 완전한 파괴를 의미하는 손상변수가 1인 시점이 되기까지 점진적 파손해석이 계속해서 반복적으로 수행된다. 일련의 과정들은 상용해석프로그램인 ABAQUS에 사용자 정의 부프로그램을 이용하여 수행되었다. 제안된 점진적파손해석 도구의 검증을 위하여, 원공을 가진 복합재료 적층판의 시험 결과와 비교를 수행하였으며, 시험 중 디지털 이미지 상관법을 이용하여 획득한 변형률 거동과 해석을 통해 획득한 변형률 거동을 비교하였다. 제안된 해석결과는 시험 결과와 비교하여 유효한 일치를 보였다.

Keywords

References

  1. Gibson, R.F., Principles of Composite Material Mechanics, CRC Press, FL, US, 2016.
  2. Matzenmiller, A., Lubliner, J., and Taylor, R.L., "A Constitutive Model for Anisotropic Damage in Fiber-composites", Mechanics of Materials, Vol. 20, No. 2, 1995, pp. 125-152. https://doi.org/10.1016/0167-6636(94)00053-0
  3. Maimi, P., Camanho, P.P., Mayugo, J.A., and Davila, C.G., "A Continuum Damage Model for Composite Laminates: Part I-Constitutive Model," Mechanics of Materials, Vol. 39, No. 10, 2007, pp. 897-908. https://doi.org/10.1016/j.mechmat.2007.03.005
  4. Maimi, P., Camanho, P.P., Mayugo, J.A., and Davila, C.G., "A Continuum Damage Model for Composite Laminates: Part II-Computational Implementation and Validation," Mechanics of Materials, Vol. 39, No. 10, 2007, pp. 909-919. https://doi.org/10.1016/j.mechmat.2007.03.006
  5. Ha, J.S., "Test and Finite Element Analysis on Compression after Impact Strength for Laminated Composite Structures of Unidirectional CFRP," Composites Research, Vol. 29, No. 6, 2016, pp. 321-327. https://doi.org/10.7234/composres.2016.29.6.321
  6. Kim, S.K., and Kweon, J.H., "Strength Analysis of Composite Double-lap Bolted Joints by Progressive Failure Theory Based on Damage Variables," Composites Research, Vol. 26, No. 2, 2013, pp. 91-98. https://doi.org/10.7234/composres.2013.26.2.091
  7. Ladeveze, P., and LeDantec, E., "Damage Modelling of the Elemmentary Ply for Laminated Composites." Composites Science and Technology, Vol. 43, 1992, pp. 257-267. https://doi.org/10.1016/0266-3538(92)90097-M
  8. Lapczyk, I., and Hurtado, J.A., "Progressive Damage Modeling in Fiber-reinforced Materials," Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 11, 2007, pp. 2333-2341. https://doi.org/10.1016/j.compositesa.2007.01.017
  9. Bazant, Z.P., and Oh, B.H., "Crack Band Theory for Fracture of Concrete," Materiaux et Construction, Vol. 16, Iss. 3, 1983, pp. 155-177. https://doi.org/10.1007/BF02486267
  10. Riccio, A., Di Costanzo, C., Di Gennaro, P., Sellitto, A., and Raimondo, A., "Intra-laminar Progressive Failure Analysis of Composite Laminates with a Large Notch Damage", Engineering Failure Analysis, Vol. 73, 2017, pp. 97-112. https://doi.org/10.1016/j.engfailanal.2016.12.012
  11. Hashin, Z., "Failure Criteria for Unidirectional Fiber Composites," Journal of applied mechanics, Vol. 47, No. 2, 1980, pp. 329-334. https://doi.org/10.1115/1.3153664
  12. ASTM D3039/D3039M-14, "Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials," ASTM International, 2014.
  13. ASTM D3410/D3410M-16, "Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading," ASTM International, 2016.
  14. ASTM D5379/D5379M-12, "Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method," ASTM International, 2012.
  15. Pinho, S.T., Robinson, P., and Iannucci, L., "Fracture Toughness of the Tensile and Compressive Fibre Failure Modes in Laminated Composites," Composites Science and Technology, Vol. 66, Iss. 13, 2006, pp. 2069-2079. https://doi.org/10.1016/j.compscitech.2005.12.023
  16. Laffan, M.J., Pinho, S. T., Robinson, P., and Iannucci, L., "Measurement of the in situ ply Fracture Toughness Associated with Mode I Fibre Tensile Failure in FRP. Part I: Data Reduction," Composites Science and Technology, Vol. 70, No. 4, 2010, pp. 606-613. https://doi.org/10.1016/j.compscitech.2009.12.016
  17. Laffan, M.J., Pinho, S.T., Robinson, P., and Iannucci, L., "Measurement of the in situ ply Fracture Toughness Associated with Mode I Fibre Tensile Failure in FRP. Part II: Size and lay-up effects," Composites Science and Technology, Vol. 70, No. 4, 2010, pp. 614-621. https://doi.org/10.1016/j.compscitech.2009.12.011