DOI QR코드

DOI QR Code

Vulnerability Analyses of Wave Overtopping Inundation by Synthesized Typhoons with Sea-Level Rise

해수면 상승과 빈도 합성태풍이 고려된 월파범람 위험성 분석

  • Kim, HyeonJeong (Department of Ocean Science & Engineering, Kunsan National University) ;
  • Suh, SeungWon (Department of Coastal Construction Engineering, Kunsan National University)
  • 김현정 (군산대학교 대학원 해양산업공학과) ;
  • 서승원 (군산대학교 해양건설공학과)
  • Received : 2019.07.31
  • Accepted : 2019.09.08
  • Published : 2019.10.31

Abstract

Storm surges caused by a typhoon occur during the summer season, when the sea-level is higher than the annual average due to steric effect. In this study, we analyzed the sea-level pressure and tidal data collected in 1 h intervals at Incheon, Kunsan, Mokpo, Seogwipo stations on the Yellow Sea coast to analyze the summer season storm surge and wave overtopping. According to our analyses, the summer mean sea-level rise on the west and south coasts is approximately 20 cm and 15 to 20 cm higher than the annual mean sea-level rise. Changes in sea-level rise are closely related to changes in seasonal sea-level pressure, within the range of 1.58 to 1.73 cm/hPa. These correlated mechanisms generates a phase difference of one month or more. The 18.6 year long period tidal constituents indicate that in 2090, the amplitude of the $M_2$ basin peaks on the southwest coast. Therefore, there is a need to analyze the target year for global warming and sea-level rise in 2090. Wave overtopping was simulated considering annual mean sea-level rise, summer sea level rise, the combined effect of nodal factor variation, and 100-year frequency storm surge. As a result, flooding by wave overtopping occurs in the area of Suyong Bay, Busan. In 2090, overtopping discharges are more than doubled than those in Marine City by the recent typhoon Chaba. Adequate coastal design is needed to prepare for flood vulnerability.

태풍으로 인한 폭풍해일은 주로 여름철에 발생하는데, steric 효과 특성으로 하계에는 연평균 해수면보다 높은 해면이 나타나 이들의 복합적 효과를 고려한 해안 저지대의 월파범람 해석이 필요하다. 본 연구에서는 이와 같이 하계에 발생하는 태풍해일 및 월파범람 취약성 해석을 위해 서남해안에 위치한 인천, 군산, 목포, 서귀포에서 관측된 1시간 간격의 기압과 조석 자료를 분석하였다. 여름철 평균 해수면 상승은 연평균 해수면 상승보다 서해안에서 약 20 cm, 남해안에서 15~20 cm 높게 나타난다. 해수면 상승 변화는 계절적 해면기압 변화와 밀접하게 연관되어 있는데, 1.58~1.73 cm/hPa의 범위에 있다. 이들의 상호 기작에서 한 달 또는 그 이상의 위상차가 발생한다. 해수면 상승 이외에 18.6년 장주기 조석 성분의 변화에 의해 2090년에 $M_2$ 분조의 진폭이 서남해안에서 최대값을 갖는 것으로 나타난다. 따라서 지구 온난화 및 해수면 상승과 관련된 목표 연도를 2090년에 맞춰서 분석할 필요성이 있다. 해수면 변화에 영향을 주는 연평균 해수면 상승, 하계 해수면 상승, 그리고 nodal factor 변동에 의한 복합적 효과와 100년 빈도 해일고를 고려한 월파 침수 범람을 모의한 결과 부산 수영만 일대 대부분이 월파에 의한 침수 범람이 발생하는 것으로 나타난다. 아울러 마린시티에서 최근 발생한 태풍 차바에 의한 월파량 보다 2090년에 2배 이상 증가되는 것으로 나타나기 때문에 월파범람 위험성에 대한 대비책을 마련할 수 있는 적절한 연안 설계가 필요하다.

Keywords

References

  1. Amiruddin, A.M., Haigh, I.D., Tsimplis, M.N., Calafat, F.M. and Dangendorf, S. (2015). The seasonal cycle and variability of sea level in the South China Sea. J. Geophys. Res., 120, 5490-5513. https://doi.org/10.1002/2015JC010923
  2. Baart, F., van Gelder, P.H.A.J.M., de Ronde, J., van Koningsveld, M. and Wouters, B. (2012). The effect of the 18.6-year lunar nodal cycle on regional sea-level rise estimates. J. Coast. Res., 28(2), 511-516. https://doi.org/10.2112/JCOASTRES-D-11-00169.1
  3. Bell, C., Vassie, J.M. and Woodworth, P.L. (1998). POL/PSMSL Tidal Analysis Software Kit 2000 (TASK-2000). Permanent Service for Mean Sea Level, CCMS Proudman Oceanographic Laboratory, Bidston Observatory, Birkenhead, Merseyside.
  4. Bruce, T., van der Meer, J.W., Franco, L. and Pearson, J.M. (2009). Overtopping performance of different armour units for rubble mound breakwaters. Coast. Engineering, 56, 166-179. https://doi.org/10.1016/j.coastaleng.2008.03.015
  5. Cheng, Y., Plag, H.P., Hamlington, B.D., Xu, Q. and He, Y. (2015). Regional sea level variability in the Bohai Sea, Yellow Sea, and East China Sea. Cont. Shelf. Res., 111, 95-107. https://doi.org/10.1016/j.csr.2015.11.005
  6. Cheng, Y., Ezer, T. and Hamlington, B.D. (2016). Sea level acceleration in the China Seas. Water, 8(7).
  7. Christensen, N.F., Roge, M.S., Thomsen, J.B., Andersen, T.L., Burcharth, H.F. and Norgaard, J.Q.H. (2014). Overtopping on rubble mound breakwaters for low steepness waves in deep and depth limited conditions. Proc. of 34th Conference on Coast. Engineering (Seoul, Korea, ASCE).
  8. Cui, M. and Zorita, E. (1998). Analysis of the sea-level variability along the Chinese coast and estimation of the impact of a CO2-perturbed atmospheric circulation. Tellus, 50A, 333-347.
  9. Dangendorf, S., Mudersbach, C., Wahl, T. and Jensen, J. (2013). Characteristics of intra-, inter-annual and decadal sea-level variability and the role of meteorological forcing: the long record of Cuxhaven. Ocean Dyn., 63, 209-224. https://doi.org/10.1007/s10236-013-0598-0
  10. IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151.
  11. Jung, T.S. (2014). Change of mean sea level due to coastal development and climate change in the Western coast of Korean pen insula. Journal of Korean Society of Coastal and Ocean Engineers, 26(3), 120-130. https://doi.org/10.9765/KSCOE.2014.26.3.120
  12. Kang, S.K., Cherniawsky, J,Y., Foreman, M.G.G., So. J.K. and Lee, S.R. (2008). Spatial variability in annual sea level variations around the Korean peninsula. Geophys. Res. Lett., 35(3).
  13. Kim, H.J. and Suh, S.W. (2019). Estimation of frequency of storm surge heights on the west and south coasts of Korea using synthesized typhoons. Journal of Korean Society of Coastal and Ocean Engineers, 31(5).
  14. Lee, H.Y. and Suh, S.W. (2016). Application of EurOtop to improve simulations of coastal inundations due to wave overtopping. J. Coast. Res., 75(sp1), 1377-1381. https://doi.org/10.2112/SI75-276.1
  15. Marcos, M., Tsimplis, M.N. and Calafat, F.M. (2012). Inter-annual and decadal sea level variations in the north-western Pacific marginal seas. Prog. Oceanogr., 105, 4-21. https://doi.org/10.1016/j.pocean.2012.04.010
  16. Mendez, F.J., Menendez, M., Luceno, A. and Losada, I.J. (2006). Analyzing monthly extreme sea levels with a time-dependent GEV model. J. Atmos. Ocean. Technol., 24, 894-911. https://doi.org/10.1175/JTECH2009.1
  17. Menendez, M. and Woodworth P.L. (2010). Changes in extreme high water levels based on a quasi-global tide-gauge data set. J. Geophys. Res., 115(C10), 1-15.
  18. Pawlowicz, R., Beardsley, B. and Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929-937. https://doi.org/10.1016/S0098-3004(02)00013-4
  19. Pelling, H.E., Uehara, K. and Green, J.A.M. (2013). The impact of rapid coastline changes and sea level rise on the tides in the Bohai Sea, China. J. Geophys. Res. Oceans, 118(7), 3462-3472. https://doi.org/10.1002/jgrc.20258
  20. Peng, D., Hill, E.M., Meltzner, A.J. and Switzer, A.D. (2019). Tide gauge records show that the 18.61-year nodal tidal cycle can change high water levels by up to 30 cm. J. Geophys. Res. Oceans, 124, 736-749. https://doi.org/10.1029/2018JC014695
  21. Pugh, D.T. and Woodworth, P.L. (2014). Sea-level science: understanding tides, surges tsunamis and mean sea-level changes. Cambridge University Press, Cambridge United Kingdom, 407.
  22. Pullen, T., Allsop, N.W.H., Bruce, T., Kortenhaus, A., Schuttrumpf, H. and van der Meer, J.W. (2007). EurOtop, Wave Overtopping of Sea Defences and Related Structures, Assessment Manual, 1-178.
  23. Suh, S.W., Lee, H.Y. and Kim, H.J. (2014). Spatio-temporal variability of tidal asymmetry due to multiple coastal constructions along the west coast of Korea. Estuar. Coast. Shelf. Sci., 151, 336-346. https://doi.org/10.1016/j.ecss.2014.09.007
  24. Suh, S.W., Lee, H.Y., Kim, H.J. and Fleming, J.G. (2015). An efficient early warning system for typhoon storm surge based on time-varying advisories by coupled ADCIRC and SWAN. Ocean Dyn., 65(5), 617-646. https://doi.org/10.1007/s10236-015-0820-3
  25. Suh, S.W. (2016). Tidal asymmetry and energy variations due to sea-level rise in a macro tidal bay. J. Coast. Res., Special Issue, 75, 765-769.
  26. Suh, S.W. and Kim, H.J. (2018). Simulation of wave overtopping and inundation over a dike caused by typhoon Chaba at Marine city, Busan, Korea. J. Coast. Res., Special Issue, 85, 711-715.
  27. Van der Meer, J.W., Allsop, N.W.H., Bruce, T., De Rouck, J., Kortenhaus, A., Pullen, T., Schüttrumpf, H., Troch, P. and Zanuttigh, B. (2016). EurOtop, Manual on Wave Overtopping of Sea Defences and Related Structures, An Overtopping Manual Largely Based on European Research, but for Worldwide Application. 252.
  28. Van Doorslaer, K., De Rouck, J. and Van der Meer, J. (2016). The reduction of wave overtopping by means of a storm wall. Pro. of 35th Conference on Coast. Engineering (Antalya, Turkey, ASCE).
  29. Watson, P.J. (2015). Development of a Unique Synthetic Data Set to Improve Sea-Level Research and Understanding. J. Coast. Res., 31(3), 758-770. https://doi.org/10.2112/JCOASTRES-D-14-00143.1
  30. Wijeratne, E.M.S., Woodworth, P.L. and Stepanov, V.N. (2008). The Seasonal Cycle of Sea Level in Sri Lanka and Southern India. West. Indian Ocean J. of Marine Sci., 7(1), 29-43.