DOI QR코드

DOI QR Code

Zero-Voltage and Zero-Current Switching Interleaved Two-Switch Forward Converter

  • Chu, Enhui (College of Information Science and Engineering, Northeast University) ;
  • Bao, Jianqun (College of Information Science and Engineering, Northeast University) ;
  • Song, Qi (College of Information Science and Engineering, Northeast University) ;
  • Zhang, Yang (College of Information Science and Engineering, Northeast University) ;
  • Xie, Haolin (College of Information Science and Engineering, Northeast University) ;
  • Chen, Zhifang (College of Information Science and Engineering, Northeast University) ;
  • Zhou, Yue (College of Information Science and Engineering, Northeast University)
  • Received : 2019.03.02
  • Accepted : 2019.06.27
  • Published : 2019.11.20

Abstract

In this paper, a novel zero-voltage and zero-current switching (ZVZCS) interleaved two switch forward converter is proposed. By using a coupled-inductor-type smoothing filter, a snubber capacitor, the parallel capacitance of the leading switches and the transformer parasitic inductance, the proposed converter can realize soft-switching for the main power switches. This converter can effectively reduce the primary circulating current loss by using the coupled inductor and the snubber capacitor. Furthermore, this converter can reduce the reverse recovery loss, parasitic ringing and transient voltage stress in the secondary rectifier diodes caused by the leakage inductors of the transformer and the coupled inductance. The operation principle and steady state characteristics of the converter are analyzed according to the equivalent circuits in different operation modes. The practical effectiveness of the proposed converter was is illustrated by simulation and experimental results via a 500W, 100 kHz prototype using the power MOSFET.

Keywords

References

  1. X. N. He, B. W. Williams, K. Sheng, S. J. Finney, and Z. M. Qian, "A composite soft switching circuit for power inverters," APEC '99. Fourteenth Annual Applied Power Electronics Conference and Exposition. 1999 Conference Proceedings (Cat. No.99CH36285), Vol.2, pp. 1272-1278, 1999.
  2. F. M. Ibanez, J. M. Echeverria, D. Astigarraga, and L. Fontan, "Soft-switching forward DC-DC converter using a continuous current mode for electric vehicle applications," IET Power Electronics, Vol. 8, No. 10, pp. 1978-1986, Sep. 2015. https://doi.org/10.1049/iet-pel.2014.0581
  3. Y. H. Xi, P. K. Jain, Y. F. Liu, and R. Orr, “A self core reset and zero voltage switching forward converter topology,” IEEE Trans. Power Electron., Vol. 15, No. 6, pp. 1192-1203, Nov. 2000. https://doi.org/10.1109/63.892834
  4. F. D. Tan, "The forward converter: from the classic to the contemporary," in Proc. IEEE APEC Conf., Vol. 2, pp. 857-863, 2002.
  5. E. S. da Silva, E. A. A. Coelho, L. C. de Freitas, J. B. Vieira, and V. J. Farias, “A soft-single-switched forward converter with low stresses and two derived structures,” IEEE Trans. Power Electron., Vol. 19, No. 2, pp. 388-395, Mar. 2004. https://doi.org/10.1109/TPEL.2003.823251
  6. B. R. Lin, S. C. Tsay, and C. S. Yang, “Analysis and implementation of ZVS forward converter with centre-coupled rectifier,” IEE Proceedings-Electric Power Applications, Vol. 153, No. 5, pp. 642-652, Sep. 2006. https://doi.org/10.1049/ip-epa:20050487
  7. M. Jinno, P. Y. Chen, and K. C. Lin, “An efficient active LC snubber for forward converters,” IEEE Trans. Power Electron., Vol. 24, No. 6, pp. 1522-1531, Jun. 2009. https://doi.org/10.1109/TPEL.2009.2014237
  8. E. Adib and H. Farzanehfard, “Analysis and design of a zero-current switching forward converter with simple auxiliary circuit,” IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 144-150, Jan. 2012. https://doi.org/10.1109/TPEL.2010.2096478
  9. J. Y. Lin, W. Z. Tzeng, C. Y. Lin, C. F. Wang, and P. J. Liu, “Active-clamping forward converter with non-linear step-down conversion,” IET Power Electron., Vol. 8, No. 1, pp. 112-119, Jan. 2015. https://doi.org/10.1049/iet-pel.2014.0170
  10. G. Waltrich and I. Barbi, “Modelling, control and realisation of the single-ended forward converter with resonant reset at the secondary side,” IET Power Electronics, Vol. 8, No. 11, pp. 2097-2106, Nov. 2015. https://doi.org/10.1049/iet-pel.2014.0956
  11. J. P. Xu, X. H. Cao, and Q. C Luo, "An improved twotransistor forward converter," in Proc. IEEE PEDS Conf., Vol. 1, pp. 225-228, 1999.
  12. M. Chen, D. H. Xu, and M. Matsui, "Study on magnetizing inductance of high frequency transformer in the two-transistor forward converter," in Proc. IEEE PCC Conf., Vol. 2, pp. 597-602, 2002.
  13. Y. L. Gu, Z. Y. Lu, Z. M. Qian, X. M. Gu, and L. J. Hang, "A novel ZVS resonant reset dual switch forward DC-DC converter," IEEE Trans. Power Electron., Vol. 22, No. 1, pp. 96-103, Jan. 2007. https://doi.org/10.1109/TPEL.2006.886612
  14. Y. K. Lo, T. S. Kao, and J. Y. Lin, “Analysis and design of an interleaved active-clamping forward converter,” IEEE Trans. Ind. Electron., Vol. 54, No. 4, pp. 2323-2332, Aug. 2007. https://doi.org/10.1109/TIE.2007.899975
  15. B. R. Lin and H. K. Chiang, “Analysis and implementation of a soft switching interleaved forward converter with current doubler rectifier,” IET Electric Power Appl., Vol. 1, No. 5, pp. 697-704, Sep. 2007. https://doi.org/10.1049/iet-epa:20070114
  16. K. B. Park, C. E. Kim, G. W. Moon, and M. J. Youn, “Three-switch active-clamp forward converter with low switch voltage stress and wide ZVS range for high-input-voltage applications,” IEEE Trans. Power Electron., Vol. 25, No. 4, pp. 889-898, Apr. 2010. https://doi.org/10.1109/TPEL.2009.2036620
  17. K. B. Park, G. W. Moon, and M. J. Youn, “Two-switch active-clamp forward converter with one clamp diode and delayed turnoff gate signal,” IEEE Trans. Ind. Electron., Vol. 58, No. 10, pp. 4768-4772, Oct. 2011. https://doi.org/10.1109/TIE.2011.2107710
  18. A. Coban and I. Cadirci, “Active clamped two-switch forward converter with a soft switched synchronous rectifier,” IET Power Electron., Vol. 4, No. 8, pp. 908-918, Sep. 2011. https://doi.org/10.1049/iet-pel.2010.0175
  19. K. Soltanzadeh, M. Dehghani, and H. Khalilian, “Analysis, design and implementation of an improved two-switch zero-current zero-voltage pulse-width modulation forward converter,” IET Power Electron., Vol. 7, No. 4, pp. 1016-1023, Apr. 2014. https://doi.org/10.1049/iet-pel.2013.0455
  20. M. T. Zhang, M. M. Jvanovic, and F. C. Lee, “Analysis and evaluation of interleaving techniques in forward converters,” IEEE Trans. Power Electron., Vol. 13, No. 4, pp. 690-698, Jul. 1998. https://doi.org/10.1109/63.704139
  21. Y. F.Chen and L. G. He, "An interleaved series-parallel combination of two-transistor forward converters," in Proc. IEEE ICIEA Conf., pp. 1-5, 2006.
  22. H. S. Kim, H. W. Seong, K. B. Park, H. S. Youn, G. W. Moon, and M. J. Youn, "Zero-voltage-switching interleaved two-switch forward converter with phase-shift control," in Proc. IEEE Energy Conversion Congress and Exposition, pp. 3727-3732, 2010.
  23. H. Feng, D. H. Xu, and M. Matsui, "A novel ZVT circuit for interleaving two-transistor forward converter," in Proc. IEEE APEC Conf., Vol. 2, pp. 754-759, 2000.
  24. D. de Souza Oliveira Jr., C. E. de Alencar e Silva, R. P. Torrico-Bascope, F. L. Tofoli, C. A. Bissochi Jr., J. B. Vieira Jr., V. J. Farias, and L. C. de Freitas, "Analysis, design, and experimentation of a double forward converter with soft switching characteristics for all switches," IEEE Trans. Power Electron., Vol. 26, No. 8, pp. 2137-2148, Aug. 2011. https://doi.org/10.1109/TPEL.2010.2104331
  25. S. Hamada and M. Nakaoka, “A novel zero-voltage and zero-current switching PWM DC-DC converter with reduced conduction losses,” IEEE Trans. Power Electron., Vol. 17, No. 3, pp. 413-419, May 2002. https://doi.org/10.1109/TPEL.2002.1004249
  26. S. Hamada and M. Nakaoka, "Analysis and design of a saturable reactor assisted soft-switching full-bridge DC-DC converter," IEEE Trans. Power Electron., Vol. 9, No. 3, pp. 309-317, May 1994. https://doi.org/10.1109/63.311264