DOI QR코드

DOI QR Code

Docking Assessment Algorithm for AUVs with Uncertainties

불확실성이 포함된 무인잠수정의 도킹 평가 알고리즘

  • Chon, Seung-jae (Department of Control and Instrumentation Engineering, Korea Maritime and Ocean University) ;
  • Sur, Joo-no (Research Institute of Industrial Technology, Korea Maritime and Ocean University) ;
  • Jeong, Seong-hoon (Research Institute of Industrial Technology, Korea Maritime and Ocean University)
  • 천승재 (한국해양대학교 제어계측공학과) ;
  • 서주노 (한국해양대학교 산업기술연구소) ;
  • 정성훈 (한국해양대학교 산업기술연구소)
  • Received : 2019.09.23
  • Accepted : 2019.10.28
  • Published : 2019.10.31

Abstract

This paper proposes a docking assessment algorithm for an autonomous underwater vehicles (AUVs) with sensor uncertainties. The proposed algorithm consists of two assessments, state assessment and probability assessment. The state assessment verifies the reachability by comparing forward distance to the docking station with expected distance to reach same depth as the docking station and necessity for correcting its route by comparing calculated inaccessible areas based on turning radius of the AUV to position of the docking station. When the AUV and the docking station is close enough and the state assessment is satisfied, the probability assessment is conducted by computing success probability of docking based on the direction angle, relative position to the docking station, and sensor uncertainties of the AUV. The final output of the algorithm is decided by comparing the success probability to threshold whether to try docking or to correct its route. To verify the validation of the suggested algorithm, the scenario that the AUV approaches to the docking station is implemented through Matlab simulation.

본 논문은 센서에 불확실성이 존재하는 무인잠수정에 대한 도킹 평가 알고리즘을 제안한다. 제안된 알고리즘은 상태평가와 확률평가 두 가지의 평가로 구성된다. 상태평가는 무인잠수정이 도킹스테이션에 접근하는 과정 중 심도제어를 통해 도킹스테이션과 동일한 수심에 도달하는데 발생 예상되는 전진거리와 실제 수평거리를 비교함으로써 심도 도달 가능 여부를, 무인잠수정의 최소선회반경으로 인한 접근 불가 영역과 도킹스테이션의 위치를 비교함으로써 충돌 회피를 위한 선회 동작 수행 여부를 확인한다. 상태평가를 만족하며 무인잠수정이 도킹스테이션에 일정 거리 이상 접근한 경우 확률평가를 수행하여 무인잠수정의 방향각과 도킹스테이션에 대한 상대위치, 그리고 센서 불확실성을 기반으로 도킹 성공확률을 산출한다. 최종적으로 산출된 도킹 성공확률을 설계된 문턱 값과 비교함으로써 도킹 수행 여부를 결정한다. Matlab 기반의 시뮬레이션을 통해 무인잠수정이 도킹스테이션에 접근하는 시나리오를 구성하여 제안하는 알고리즘의 유효성을 검증한다.

Keywords

References

  1. R. S. McEwen, B.. W. Hobson, L. McBride, and J. G. Bellingham, “Docking control system for a 54-cm-diameter (21-in) AUV,” IEEE Journal of Oceanic Engineering, Vol. 33, No. 4, pp. 550-562, Oct. 2008. https://doi.org/10.1109/JOE.2008.2005348
  2. L. Paull, S. Saeeedi, M. Seto, and H. Li, “AUV navigation and localization: a review,” Journal of Oceanic Engineering, Vol. 39, No. 1, pp. 131-149, Jan. 2014. https://doi.org/10.1109/JOE.2013.2278891
  3. H. S. Kang, S. M. Hong, J. N. Sur, and J. Y. Kim, “Design of GPS-aided dead reckoning algorithm of AUV using extended kalman filter,” Journal of Ocean Engineering and Technology, Vol. 31, No. 1, pp. 28-35, Feb. 2017. https://doi.org/10.5574/KSOE.2017.31.1.028
  4. S. K. Park, J. H. Lee, B. H. Jun, and P. M. Lee, “Virtual goal method for homing trajectory planning of an autonomous underwater vehicle,” Journal of Ocean Engineering and Technology, Vol. 23, No. 5, pp. 61-70, Oct. 2009.
  5. E. Y. Hong, T. K. Meng, and M. Chitre, “Online system identification of an autonomous underwater vehicle via in-field experiments,” IEEE Journal of Oceanic Engineering, Vol. 41, No. 1, pp. 5-17, Jan. 2016. https://doi.org/10.1109/JOE.2015.2403576
  6. L. Lapierre and B. Jouvencel, “Robust nonlinear path-following control of an AUV,” IEEE Journal of Oceanic Engineering, Vol. 33, No. 2, pp. 89-102, Apr. 2008. https://doi.org/10.1109/JOE.2008.923554
  7. A. P. Aguiar and A. M. Pascoal, "Dynamic positioning and way-point tracking of undersaturated AUVs in the presence of ocean currents," in Proceeding of the 41th IEEE Conference on Decision and Control, Las Vegas: NV, pp. 2105-2110, 2002.
  8. K. Y. Lee, S. B. Kim, and C. H. Song, “Global path planning for autonomous underwater vehicles in current field with obstacles,” Journal of Ocean Engineering and Technology, Vol. 26, No. 4, pp. 1-7, Aug. 2012. https://doi.org/10.5574/KSOE.2012.26.4.001
  9. A. Sans-Muntadas E. F. Brekke, O. Hegrenaes, and K. Y. Pettersen, "Navigation and probability assessment for successful AUV docking using USBL," in 10th IFAC Conference on Maneuvering and Control of Marine Craft, Copenhagen: Denmark, pp. 201-209, 2015.
  10. Z. J. Sun, Y. Z. Luo, H. W. Li, “Uncertainty-dependent warning threshold of spacecraft rendezvous collision probability,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 55, No. 1, pp. 2-16, Feb. 2019. https://doi.org/10.1109/TAES.2018.2845158
  11. C. T. Shelton, J. L. Junkins, "Probability of collision between space objects including model uncertainty," Acia Astronautica, Vol. 155, pp. 462-471, Feb. 2019. https://doi.org/10.1016/j.actaastro.2018.11.051
  12. T. I. Fossen, Guidance and Control of Ocean Vehicles, 4th ed. New York, NY: John Wiley & Sons, 1994.
  13. S. K. Park, “A method for RBF-based approximate optimization of expensive black box functions,” Korean Journal of Computation Design and Engineering, Vol. 21, No. 4, pp. 443-452, Dec. 2016. https://doi.org/10.7315/CDE.2016.443
  14. T. Prestero, Verification of a six-degree of freedom simulation model for the remus autonomous underwater vehicle, Master's thesis, Massachusetts Institute of Technology / Woods Hole Oceanographic Institution, Cambridge, MA, 2001.