DOI QR코드

DOI QR Code

Utilization of AeroMACS Infrastructure for Airports and Airlines

공항 및 항공사를 위한 AeroMACS 인프라 활용 연구

  • Lim, In-Kyu (Department of Aviation Management, Graduate School, Korea Aerospace University) ;
  • Kang, Ja-Young (Department of Aviation Management, Graduate School, Korea Aerospace University)
  • 임인규 (한국항공대학교 대학원 항공운항관리학과) ;
  • 강자영 (한국항공대학교 대학원 항공운항관리학과)
  • Received : 2019.10.04
  • Accepted : 2019.10.25
  • Published : 2019.10.31

Abstract

AeroMACS spectrum is a national resource internationally allocated by ITU at WRC-07. AeroMACS is an airport broadband mobile communication infrastructure based on WiMAX-based IEEE 802.16e that enables real-time video, graphics, voice, and high-speed data transmission. With the approval of ICAO's development technology standards in 2008, 50 airports in 11 countries have already completed the testing of D-TAXI or A-SMGCS technology using the AeroMACS infrastructure in 2019, starting in the United States in 2009. With many advantages in safety and convenience in terrestrial telecommunications operations, the system is becoming an area of performance improvement for airport operations in accordance with ICAO's ASBU plan. This paper examines the current status of domestic development of AeroMACS and lists service areas applicable to airlines and operators. It also seeks to promote safe and efficient next-generation airport mobile communication system services by presenting feasible partners management in the mobile area and use of aircraft communication systems for active technology development.

AeroMACS 스펙트럼은 WRC-07에서 ITU에 의해 국제적으로 할당된 국가 자원이다. AeroMACS는 WiMAX 기반의 IEEE 802.16e를 표준으로 하는 공항 광대역 이동 통신 인프라로서 실시간 비디오, 그래픽, 음성 및 고속 데이터 전송을 가능하게 한다. 2008년 ICAO의 개발 기술기준이 승인되면서 2009년 미국을 시작으로 2019년 기준 11개국 50개 공항에서는 이미 AeroMACS 인프라를 활용하여 D-TAXI나 A-SMGCS 기술에 대한 시험을 완료하였다. 지상 통신 운영에 있어 안전과 편의성에 많은 장점을 가진 이 시스템은 ICAO의 ASBU 계획에 따라 공항 운영에 대한 성능개선 영역으로 되고 있다. 본 논문은 AeroMACS의 국내 개발구축 현황을 알아보고 실제 사용자인 항공사 및 조업사에서 적용 가능한 부분들을 열거한다. 또한 능동적인 기술 개발을 위해 실현 가능한 이동 지역 내 협력업체 관리와 항공기 통신 시스템 활용 방안을 제시하여 안전하고 효율적인 차세대 공항 이동 통신 시스템 서비스 활성화를 도모하고자 한다.

Keywords

References

  1. ITU-R, Final acts WRC-07, "Considerations for use of the band 5091-5150 MHz by the aeronautical mobile service for certain aeronautical applications", World Radiocommunication Conference, Geneva, Switzerland, pp. 418-425, Nov. 2007. [Internet]. Available: https://www.itu.int/dms_pub/itu-r/opb/act/R-ACT-WRC.8-2007-PDF-E.pdf
  2. G. Doug and N. Nima, AeroMACS: delivering next communications to the airport surface, WiMAX Forum, (n.d.), Apr. 2015. [Internet]. Available: http://files.wimaxforum.org/Document/Download/AeroMACS-Delivering_Next_Generation_Communications_to_the_Airport_Surface
  3. K. Robert, A. Rafael, and D. Robert, "AeroMACS system characterization and demonstrations," in 2013 IEEE Aerospace Conference, Big Sky: MT, pp. 1-10, Mar. 2013.
  4. Z. Maede, A. T. Marcio, and J. Raj, "Analysis of AeroMACS data link for unmanned aircraft vehicles," in Unmanned Aircraft Systems (ICUAS) 2018 International Conference, Dallas: TX, pp. 752-759, 2018.
  5. R. Alessandra and J. Ricardo, AeroMACS-aeronautical mobile airport communication system standardized solution for the sirport surface, WiMAX Forum, (n.d.), 2018. [Internet]. Available: https://www.icao.int/SAM/Documents/2018-SAMIG22/AeroMACS%20Presentation%20-%2022November2018_Final.pdf
  6. P. Monica, AeroMACS: a common platform for air traffic management applications, Senza Fili Consulting, White Paper 2015, [Internet]. Available: http://files. wimaxforum.org/Document/Download/SenzaFili_AeroMACS_White_Paper_2015
  7. Avionics Today, AeroMACS could emerge as an enterprise eolution for the FAA, 2016.1.19. [Internet]. Available: https://www.aviationtoday.com/2016/01/19/aeromacs-could-emerge-as-an-enterprise-solution-for-the-faa/
  8. M. Mohamed, L. Nicolas, and P. Alain, "A quantitative risk assessment of AeroMACS security in SESAR," in NASA, ICNS Conference, Herndon: VA, pp. C7-1 - C7-15, 2012.
  9. ROK MLIT, Master plan for the implementation of aviation system block upgrades, Apr. 2014.
  10. E. Hall, J. Isaacs, S. Henriksen, and N. Zelkin, C-band airport surface communications system standards development, phase II final report, volume 1: concepts of use, initial system requirements, architecture, and AeroMACS design considerations, NASA, NASA/CR-2011-216997/VOL1, Apr. 2011.
  11. E. Hall and J. Magner, C-band airport surface communications system standards development, phase II final report, volume 2: test bed performance evaluation and final AeroMACS recommendations, NASA, NASA/CR-2011-216997/VOL2, Apr. 2011.
  12. J. Budinger and E. Hall, Aeronautical mobile airport communications system (AeroMACS), NASA, NASA/TM-2011-217236, E-17781-1, Oct. 2011. [Internet]. Available: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110022433.pdf
  13. ICAO, AeroMACS development in CHINA, WP, AN-Conf/13-WP/198, 13th ANC, ICAO, Montreal, Canada, pp. 1-3, Oct. 2018.
  14. R. Zhang, "Enhancing aerodrome surface operation by AeroMACS and BDS," CAAC Air Traffic Regulation Office, (n.d.), Nov. 2018.
  15. K. Y. Sohn and Y. O. Park, “Technology trends on AeroMACS system,” Electronics and Telecommunications Research Institute, Vol. 27, No. 2, pp. 11-20, 2012.
  16. S. Y. Jang and E. S. Lee, “Design and implementation of synchronization unit for AeroMACS system,” The Journal of Korea Navigation Institute, Vol. 18, No. 2, pp. 142-150, 2014.
  17. ROK MLIT, Study on next generation airport communication system construction and operation plan, Dec. 2015.
  18. ROK MLIT, advanced surface movement guidance & control system(A-SMGCS) development, Korea Agency for Infrastructure Technology Advancement, Jul. 2017.