DOI QR코드

DOI QR Code

Design of Bent-Slotted High-Sensitivity Microstrip Patch Permittivity Sensor Antenna

구부러진 슬롯이 추가된 고감도 마이크로스트립 패치 유전율 센서 안테나 설계

  • Yeo, Junho (School of Computer and Communication Engineering/Information and Communication Research Center, Daegu University) ;
  • Lee, Jong-Ig (Division of Mechatronics Engineering, Dongseo University)
  • 여준호 (대구대학교 정보통신공학부/정보통신연구소) ;
  • 이종익 (동서대학교 메카트로닉스융합공학부)
  • Received : 2019.08.29
  • Accepted : 2019.10.28
  • Published : 2019.10.31

Abstract

In this paper, a design method for a high-sensitivity microstrip patch sensor antenna (MPSA) loaded with a bent-slot was studied for the permittivity measurement. The bent-slot similar to a single-ring complementary split ring resonator was added along a radiating edge of the patch in order to enhance the sensitivity to the permittivity. The sensitivity of the proposed MPSA was compared with that of a conventional rectangular MPSA and a thin rectangular-slotted MPSA. Three MPSAs were designed and fabricated on a 0.76-mm-thick RF-35 substrate so that the input reflection coefficient would resonate at 2.5 GHz in the absence of the superstrate under test. When five different Taconic substrates with a relative permittivity ranging from 2.17 to 10.2 were used as the superstrate under test, experiment results show that the sensitivity of the proposed MPSA, which is measured by the shift in the resonant frequency of the input reflection coefficient, is 4.1 to 6.1 times higher than that of the conventional MPSA.

본 논문에서는 유전율 측정을 위한 구부러진 슬롯이 추가된 고감도 마이크로스트립 패치 센서 안테나의 설계 방법에 대하여 연구하였다. 유전율에 대한 감도를 향상시키기 위해 단일 링 CSRR 구조와 유사한 구부러진 슬롯이 패치의 한쪽 방사면에 추가되었다. 제안된 마이크로스트립 패치 센서 안테나의 감도를 기존의 직사각형 마이크로스트립 패치 센서 안테나와 얇은 직사각형 슬롯이 추가된 마이크로스트립 패치 센서 안테나와 비교하였다. 세 마이크로스트립 패치 센서 안테나는 피 시험 상판이 없는 상태에서 전송 계수가 2.5 GHz에서 공진하도록 0.76 mm 두께의 RF-35 기판 상에 설계하고 제작하였다. 피 시험 상판으로 비유전율이 2.17에서 10.2 범위에 있는 타코닉 기판 5종을 사용하여 실험한 결과, 입력 반사계수의 공진 주파수의 이동으로 측정된 제안된 마이크로스트립 센서 안테나의 감도는 기존의 직사각형 마이크로스트립 패치 센서 안테나와 비교할 때 4.1배에서 6.1배 증가하는 것을 확인하였다.

Keywords

References

  1. S. Kiani, P. Rezaei, M. Navaei, and M. S. Abrishamian, “Microwave sensor for detection of solid material permittivity in single/multilayer samples with high quality factor,” IEEE Sensors Journal, Vol. 18, No. 24, pp. 9971-9977, Dec. 2018. https://doi.org/10.1109/JSEN.2018.2873544
  2. M. S. Boybay and O. M. Ramahi, “Material characterization using complementary split-ring resonators,” IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 11, pp. 3039-3046, Nov. 2012. https://doi.org/10.1109/TIM.2012.2203450
  3. W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, and D. Abbott, "Metamaterial-based microfluidic sensor for dielectric characterization," Sensors and Actuators A: Physical, Vol. 189, pp. 233-237, Jan. 2013. https://doi.org/10.1016/j.sna.2012.10.027
  4. K. T. M. Shafi, A. K. Jha, and M. J. Akhtar, “Improved planar resonant RF sensor for retrieval of permittivity and permeability of materials,” IEEE Sensors Journal, Vol. 17, No. 17, pp. 5479-5486, Sep. 2017. https://doi.org/10.1109/JSEN.2017.2724942
  5. J. Yeo and J.-I. Lee, "High-sensitivity microwave sensor based on an interdigital-capacitor-shaped defected ground structure for permittivity characterization," Sensors, Vol. 19, p. 498, Jan. 2019. https://doi.org/10.3390/s19030498
  6. I. J. Bahl, P. Bhartia, and S. S. Stuchly, "Design of microstrip antennas covered with a dielectric layer," IEEE Transactions on Antennas and Propagation, Vol. 30, pp. 314-318, Mar. 1982. https://doi.org/10.1109/TAP.1982.1142766
  7. M. Bogosanovich, “Microstrip patch sensor for measurement of the permittivity of homogeneous dielectric materials,” IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 5, pp. 1144-1148, Oct. 2000. https://doi.org/10.1109/19.872944
  8. K. Y. You, J. Salleh, Z. Abbas, and L. L. You, "A rectangular patch antenna technique for the determination of moisture content in soil," in Progress In Electromagnetics Research Symposium (PIERS) Proceedings, Cambridge: MA, pp. 850-854, Jul. 2010.
  9. N. Z. Yahaya, Z. Abbas, B. M. Ali, A. Ismail, and A. F. Ansarudin, "Intercomparison of methods for determination of resonant frequency shift of a microstrip patch antenna loaded with hevea rubber latex," Journal of Sensors, Vol. 2014, p. 656972, Aug. 2014.
  10. K. Lee, A. Hassan, C. H. Lee, and J. Bae, "Microstrip patch sensor for salinity determination," Sensors, Vol. 17, No. 12, p. 2941, Dec. 2017. https://doi.org/10.3390/s17122941
  11. J. Yeo and J.-I. Lee, "Slot-loaded microstrip patch sensor antenna for high-sensitivity permittivity characterization," Electronics, Vol. 8, p. 502, May 2019. https://doi.org/10.3390/electronics8050502
  12. Y. Huang and K. Boyle, Antennas: From Theory to Practice, Hoboken, NJ; John Wiley & Sons, 2008.
  13. A. Ebrahimi, J. Scott, and K. Ghorbani, “Differential sensors using microstrip lines loaded with two split ring resonators,” IEEE Sensors Journal, Vol. 18, No. 14, pp. 5786-5793, May 2018. https://doi.org/10.1109/JSEN.2018.2840691
  14. Taconic PTFE laminates [Internet]. Available: http://www.taconic.co.kr/pages/sub02_03.php.