EXTENSION OF PHASE-ISOMETRIES BETWEEN THE UNIT SPHERES OF ATOMIC L_p-SPACES FOR $p > 0$

XUJIAN HUANG AND XIHONG JIN

Abstract. In this paper, we prove that for every surjective phase-isometry between the unit spheres of real atomic L_p-spaces for $p > 0$, its positive homogeneous extension is a phase-isometry which is phase equivalent to a linear isometry.

1. Introduction

Let X and Y be real normed spaces. A mapping $f : X \to Y$ is called a phase-isometry if f satisfies the functional equation
\[
\{\|f(x) + f(y)\|, \|f(x) - f(y)\|\} = \{\|x + y\|, \|x - y\|\} \quad (x, y \in X).
\]

Let us say that a mapping $f : X \to Y$ is phase equivalent to a linear isometry if there exists a phase function $\varepsilon : X \to \{-1, 1\}$ such that εf is a linear isometry.

The notation of phase-isometry is linked to the famous Wigner’s theorem, which plays a fundamental role in quantum mechanics and in representation theory in physics. There are several equivalent formulations of Wigner’s theorem, see [1, 4, 5, 8, 10, 12] to list just some of them. The real version of Wigner’s theorem [10] says that a mapping $f : H \to K$ satisfies the functional equation
\[
|\langle f(x), f(y) \rangle| = |\langle x, y \rangle| \quad (x, y \in H)
\]
is phase equivalent to a linear isometry provided that H and K are real inner product spaces. This is equivalent to saying that every phase-isometry from the real inner product space H into K is phase equivalent to a linear isometry.

Recently, Huang and Tan [6] showed that every surjective phase-isometry between real atomic L_p-spaces for $p > 0$ is phase equivalent to a linear isometry, which generalizes Wigner’s theorem to real atomic L_p-spaces for $p > 0$.

In 1987, D. Tingley [11] proposed the following question: Let f be a surjective isometry between the unit spheres S_X and S_Y of real normed spaces X and Y, respectively. Is it true that $f : S_X \to S_Y$ extends to a linear isometry?
$F : X \to Y$ of the corresponding spaces? This problem is known as the Tingly’s problem or isometric extension problem. We refer the reader to the introduction of [9] for more information and recent development on this problem. The survey of Ding [3] is one of the good references for understanding the history of the problem. Let us consider the natural positive homogeneous extension F of f, where F is given by

$$F(x) = \begin{cases} \|x\| f\left(\frac{x}{\|x\|}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

(1)

Then Tingley’s problem can be solved in positive for pairs (X, Y) if and only if the natural positive homogeneous extension F is a (linear) isometry. Inspired by Tingley’s problem, it is natural to ask the following question:

Problem 1.1. Let f be a surjective phase-isometry between the unit spheres S_X and S_Y of real normed spaces X and Y, respectively. Is it true that the natural positive homogeneous extension F is a phase-isometry?

In this paper, we answer Problem 1.1 in positive for real atomic L_p-spaces for $p > 0$. That is for every phase-isometry from the unit sphere $S_{l_p(\Gamma)}$ onto $S_{l_p(\Delta)}$ of real atomic L_p-spaces for $p > 0$, the natural positive homogeneous extension is phase equivalent to a linear isometry, and therefore actually a phase-isometry. We also show that Problem 1.1 is solved in positive for real inner product spaces.

2. Results

We first discuss the phase-isometric extension problem on real inner product spaces and show that Problem 1.1 is solved in positive for such spaces.

Proposition 2.1. Let H and K be inner product spaces, and let $f : S_H \to S_K$ be a phase-isometry. Then the positive homogeneous extension F of f is a phase-isometry.

Proof. Since H and K are inner product spaces, by the polarization identity, we have

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2),$$

$$\langle f(x), f(y) \rangle = \frac{1}{4} (\|f(x) + f(y)\|^2 - \|f(x) - f(y)\|^2)$$

for all $x, y \in S_H$. By the assumption of f, we have $|\langle f(x), f(y) \rangle| = |\langle x, y \rangle|$ for all $x, y \in S_H$. Hence,

$$|\langle F(x), F(y) \rangle| = |\langle \|x\| f\left(\frac{x}{\|x\|}\right), \|y\| f\left(\frac{y}{\|y\|}\right) \rangle|$$

$$= \|x\| \|y\| |\langle f\left(\frac{x}{\|x\|}\right), f\left(\frac{y}{\|y\|}\right) \rangle| = |\langle x, y \rangle|$$
for all $x, y \in H$ with $x, y \neq 0$. It follows from Wigner’s Theorem that F is phase equivalent to a linear isometry, and this completes the proof. \hfill \square

Recall that every real atomic L_p-space for $p > 0$ is linearly isometric to $l_p(\Gamma)$ for some nonempty index set Γ, that is,

$$l_p(\Gamma) = \{ x = \sum_{\gamma \in \Gamma} \xi_\gamma e_\gamma : \| x \| = (\sum_{\gamma \in \Gamma} |\xi_\gamma|^p)\frac{1}{p} < \infty, \ \xi_\gamma \in \mathbb{R} \}.$$

The unit sphere of $l_p(\Gamma)$ is $\{ x \in l_p(\Gamma) : \| x \| = 1 \}$ and is denoted by $S_{l_p(\Gamma)}$. For every $x = \sum_{\gamma \in \Gamma} \xi_\gamma e_\gamma \in l_p(\Gamma)$, we denote the support of x by Γ_x, i.e.,

$$\Gamma_x = \{ \gamma \in \Gamma : \xi_\gamma \neq 0 \}.$$

Then x can be rewritten in the form $x = \sum_{\gamma \in \Gamma_x} \xi_\gamma e_\gamma \in l_p(\Gamma)$. For $x, y \in l_p(\Gamma)$, we use the symbol $xy = 0$ to represent $\Gamma_x \cap \Gamma_y = \emptyset$. It is well-known that $xy = 0$ if and only if $\| x + y \| = \| x - y \|$ for all $x, y \in l_2(\Gamma)$. We also need the following well-known result which can be found from [7, Corollary 2.1] (noting that Banach used it in his book [2] already). The statement is that $xy = 0$ if and only if $\| x + y \|^p + \| x - y \|^p = 2(\| x \|^p + \| y \|^p)$ for all $x, y \in l_p(\Gamma)$ with $p > 0$, $p \neq 2$. By this one can conclude the following result.

Lemma 2.2. Let $X = l_p(\Gamma)$ and $Y = l_p(\Delta)$ for $p > 0$. Suppose that $f : S_X \rightarrow S_Y$ is a phase-isometry. Then $xy = 0$ if and only if $f(x)f(y) = 0$ for all $x, y \in S_X$.

Our next lemma will show that every surjective phase-isometry between the unit spheres of real atomic L_p-space for $p > 0$ necessarily maps antipodal points to antipodal points. So the positive homogeneous extension is homogeneous for the negative scalars as well.

Lemma 2.3. Let $X = l_p(\Gamma)$ and $Y = l_p(\Delta)$ for $p > 0$. Suppose that $f : S_X \rightarrow S_Y$ is a surjective phase-isometry. Then f is injective and $f(-x) = -f(x)$ for every $x \in S_X$. Moreover, for every $\gamma \in \Gamma$, there exists $\delta \in \Delta$ such that $f(e_\gamma) = \pm e_\delta$.

Proof. Let us take $x \in S_X$. Since f is surjective, we can pick $y \in S_X$ such that $f(y) = -f(x)$. Notice that f is a phase-isometry, we have

$$\{ \| x + y \|, \| x - y \| \} = \{ \| f(x) + f(y) \|, \| f(x) - f(y) \| \} = \{ 0, 2 \}$$

which implies that $y = \pm x$. If $y = x$, then $f(x) = f(y) = -f(x)$, which is impossible. Hence we get $y = -x$ and so $f(-x) = -f(x)$. On the other hand, suppose that $f(z) = f(x)$ for some $z \in S_X$. By the assumption of f, we have

$$\{ \| x + z \|, \| x - z \| \} = \{ \| f(x) + f(z) \|, \| f(x) - f(z) \| \} = \{ 2, 0 \}.$$

This means that $z = x$ and f is injective.

We will prove the “moreover” part. Let δ be in the support of $f(e_\gamma)$ and pick $x \in S_X$ such that $f(x) = e_\delta$. Applying Lemma 2.2 we have

$$e_\gamma e_{\gamma'} = 0 \Rightarrow f(e_\gamma)f(e_{\gamma'}) = 0 \Rightarrow f(x)f(e_{\gamma'}) = 0 \Rightarrow xe_{\gamma'} = 0$$
for all $\gamma' \in \Gamma$ with $\gamma' \neq \gamma$. It follows that $x = \pm e_\gamma$, and so $f(e_\gamma) = \pm e_\delta$. \hfill \Box

Now we derive the representation theorem of surjective phase-isometries between the unit spheres of real atomic L_p-spaces for $p > 0$, $p \neq 2$.

Theorem 2.4. Let $X = l_p(\Gamma)$ and $Y = l_p(\Delta)$ for $p > 0$, $p \neq 2$. Suppose that $f : S_X \to S_Y$ is a surjective phase-isometry. Then for every $x = \sum_{\gamma \in \Gamma} \xi_\gamma e_\gamma \in S_X$, we have $f(x) = \sum_{\gamma \in \Gamma} \eta_\gamma f(e_\gamma)$, where $|\xi_\gamma| = |\eta_\gamma|$ for all $\gamma \in \Gamma$.

Proof. Let x be in S_X and write $x = \sum_{\gamma \in \Gamma_x} \xi_\gamma e_\gamma$, where $\sum_{\gamma \in \Gamma_x} |\xi_\gamma|^p = 1$ and $\xi_\gamma \neq 0$ for all $\gamma \in \Gamma_x$. According to Lemma 2.3, we can set

$$M := \{ \delta \in \Delta : f(e_\gamma) = \pm e_\delta, \forall \gamma \in \Gamma_x \}.$$

Choose $y \in S_X$ such that $f(y) = e_\delta$ for some $\delta \in \Delta \setminus M$. Applying Lemma 2.2, we have

$$f(e_\gamma) f(y) = 0 \Rightarrow e_\gamma y = 0 \Rightarrow xy = 0 \Rightarrow f(x) f(y) = f(x) e_\delta = 0$$

for all $\gamma \in \Gamma_x$. Thus we can write $f(x) = \sum_{\gamma \in \Gamma_x} \eta_\gamma f(e_\gamma)$, where $\sum_{\gamma \in \Gamma_x} |\eta_\gamma|^p = 1$. By the assumption of f,

$$\|f(x) + f(e_\gamma)\|^p + \|f(x) - f(e_\gamma)\|^p = \|x + e_\gamma\|^p + \|x - e_\gamma\|^p = 1 - |\xi_\gamma|^p + |\xi_\gamma + 1|^p + 1 - |\xi_\gamma|^p + |\xi_\gamma - 1|^p = |1 + \xi_\gamma|^p + |1 - \xi_\gamma|^p - 2|\xi_\gamma|^p + 2.$$

On the other hand,

$$\|f(x) + f(e_\gamma)\|^p + \|f(x) - f(e_\gamma)\|^p = 1 - |\eta_\gamma|^p + |\eta_\gamma + 1|^p + 1 - |\eta_\gamma|^p + |\eta_\gamma - 1|^p = |1 + \eta_\gamma|^p + |1 - \eta_\gamma|^p - 2|\eta_\gamma|^p + 2.$$

It follows that

$$|1 + \xi_\gamma|^p + |1 - \xi_\gamma|^p - 2|\xi_\gamma|^p = |1 + \eta_\gamma|^p + |1 - \eta_\gamma|^p - 2|\eta_\gamma|^p.$$

Notice that the function $\varphi(t) = (1 + t)^p + (1 - t)^p - 2t^p$ is strictly decreasing (increasing) on $[0, 1]$ for $0 < p < 2$ ($p > 2$) (Here, we need the fact that $(s + r)^p < s^p + r^p$ for $0 < p < 1$ and $(s + r)^p > s^p + r^p$ for $p > 1$ whenever $s, r > 0$). Consequently, we obtain $|\xi_\gamma| = |\eta_\gamma|$ for all $\gamma \in \Gamma_x$. \hfill \Box

Our next results are devoted to determining the behaviour of surjective phase-isometries between the unit spheres of real atomic L_p-spaces for $p > 0$, $p \neq 2$ on vectors which are linear combinations of two zero-product norm-one vectors.
Lemma 2.5. Let \(X = l_p(\Gamma) \) and \(Y = l_p(\Delta) \) for \(p > 0, p \neq 2 \). Suppose that \(f : S_X \to S_Y \) is a surjective phase-isometry. Let \(x, y \in S_X \) with \(xy = 0 \) and \(\lambda \in \mathbb{R} \). Then there exist two real numbers \(\alpha, \beta \) with \(|\alpha| = |\beta| = 1 \) such that

\[
\|x + \lambda y\| f\left(\frac{x + \lambda y}{\|x + \lambda y\|}\right) = \alpha f(x) + \beta \lambda f(y).
\]

Proof. Suppose that \(x = \sum_{\gamma \in \Gamma_x} \xi_{\gamma} \), \(y = \sum_{\gamma \in \Gamma_y} \eta_{\gamma} \), and that \(0 \neq \lambda \in \mathbb{R} \). By Theorem 2.4 we can write

\[
f(x) = \sum_{\gamma \in \Gamma_x} \xi'_{\gamma} f(e_{\gamma}), \quad f(y) = \sum_{\gamma \in \Gamma_y} \eta'_{\gamma} f(e_{\gamma}),
\]

\[
\|x + \lambda y\| f\left(\frac{x + \lambda y}{\|x + \lambda y\|}\right) = \sum_{\gamma \in \Gamma_x} \xi''_{\gamma} f(e_{\gamma}) + \lambda \sum_{\gamma \in \Gamma_y} \eta''_{\gamma} f(e_{\gamma}),
\]

where \(|\xi'_{\gamma}| = |\xi''_{\gamma}| = |\xi|\) and \(|\eta'_{\gamma}| = |\eta''_{\gamma}| = |\eta|\) for all \(\gamma \in \Gamma_x \cup \Gamma_y \). To simplify the writing, we take \(A = \frac{1}{\|x + \lambda y\|} = \frac{1}{(1 + \|\lambda\|^p)^{\frac{1}{p}}} \). Since \(f \) is a phase-isometry,

\[
\{(A + 1)^p + (A|\lambda|)^p, (1 - A)^p + (A|\lambda|)^p\}
\]

\[
= \left\{ \left\|\frac{x + \lambda y}{\|x + \lambda y\|} + x\right\|^p, \left\|\frac{x + \lambda y}{\|x + \lambda y\|} - x\right\|^p \right\}
\]

\[
= \left\{ \left\| f\left(\frac{x + \lambda y}{\|x + \lambda y\|}\right) + f(x)\right\|^p, \left\| f\left(\frac{x + \lambda y}{\|x + \lambda y\|}\right) - f(x)\right\|^p \right\}
\]

\[
= \left\{ \sum_{\gamma \in \Gamma_x} |A\xi''_{\gamma} + \xi'_{\gamma}|^p + (A|\lambda|)^p, \sum_{\gamma \in \Gamma_x} |A\xi''_{\gamma} - \xi'_{\gamma}|^p + (A|\lambda|)^p \right\}.
\]

This shows that

\[
(A + 1)^p \in \left\{ \sum_{\gamma \in \Gamma_x} |A\xi''_{\gamma} + \xi'_{\gamma}|^p, \sum_{\gamma \in \Gamma_x} |A\xi''_{\gamma} - \xi'_{\gamma}|^p \right\}.
\]

Notice that

\[
\sum_{\gamma \in \Gamma_x} |A\xi''_{\gamma} \pm \xi'_{\gamma}|^p \leq \sum_{\gamma \in \Gamma_x} (|A\xi''_{\gamma}| + |\xi'_{\gamma}|)^p = (A + 1)^p.
\]

Then we obtain \(\xi''_{\gamma} = \xi'_{\gamma} \) for all \(\gamma \in \Gamma_x \), or \(\xi''_{\gamma} = -\xi'_{\gamma} \) for all \(\gamma \in \Gamma_x \). It follows that \(\sum_{\gamma \in \Gamma_x} \xi''_{\gamma} e_{\gamma} = \pm f(x) \). Similar argument yields \(\sum_{\gamma \in \Gamma_y} \eta''_{\gamma} e_{\gamma} = \pm f(y) \). The proof is complete. \(\Box \)

In [13] Wang proved that for every surjective isometry between unit spheres of real atomic \(L_p \)-spaces for \(p > 0, p \neq 2 \), its natural positive homogeneous extension is a linear isometry on the whole space. By this result, we are now ready to present main result of this paper.
Theorem 2.6. Let $X = l_p(\Gamma)$ and $Y = l_p(\Delta)$ for $p > 0$. Suppose that $f : S_X \to S_Y$ is a surjective phase-isometry. Then the positive extension F of f is phase equivalent to a linear isometry.

Proof. Proposition 2.1 proves the case $p = 2$. We need only consider the case $p > 0, p \neq 2$. Set $Z := \{x \in X : xe_{\gamma_0} = 0\}$ and $W := \{w \in Y : wf(e_{\gamma_0}) = 0\}$ for some $\gamma_0 \in \Gamma$. It is not hard to check that $S_X = \{z + \lambda e_{\gamma_0} : z \in S_Z, \lambda \in \mathbb{R}\} \cup \{\pm e_{\gamma_0}\}$. By Lemma 2.5 we can write
\[
\|z + \lambda e_{\gamma_0}\|f(z) = \alpha(z, \lambda)f(z) + \beta(z, \lambda)\lambda f(e_{\gamma_0}),
\]
for all $z \in S_Z$ and $\lambda \in \mathbb{R}$. Define a mapping $g : S_X \to S_Y$ as follows:
\[
g(e_{\gamma_0}) = f(e_{\gamma_0}), \quad g(-e_{\gamma_0}) = -f(e_{\gamma_0}), \quad g(z) = \alpha(z, 1)\beta(z, 1)f(z),
\]
\[
\|z + \lambda e_{\gamma_0}\|g(z) = \alpha(z, \lambda)\beta(z, \lambda)f(z) + \lambda f(e_{\gamma_0})
\]
for all $z \in S_Z$ and $0 \neq \lambda \in \mathbb{R}$. Then g is a phase-isometry, which is phase equivalent to f. Since $f(S_Z) = S_W$ by Theorem 2.4, we deduce that $g(S_Z) \subset S_W$.

Next, we will show that $g|S_Z : S_Z \to S_W$ is a surjective isometry. Let us take $z \in S_Z$ and $0 \neq \lambda \in \mathbb{R}$. Set $A := \frac{1}{\|z + e_{\gamma_0}\|}$ and $B := \frac{1}{\|z + \lambda e_{\gamma_0}\|}$. Since g is a phase-isometry,
\[
\{|A + B|^p + |A + B\lambda|^p, |A - B|^p + |A - B\lambda|^p\}
\]
\[
= \left\{ \left\| \frac{z + e_{\gamma_0}}{\|z + e_{\gamma_0}\|} + \frac{z + \lambda e_{\gamma_0}}{\|z + \lambda e_{\gamma_0}\|} \right\|^p, \left\| \frac{z + e_{\gamma_0}}{\|z + e_{\gamma_0}\|} - \frac{z + \lambda e_{\gamma_0}}{\|z + \lambda e_{\gamma_0}\|} \right\|^p \right\}
\]
\[
= \left\{ \left\| g\left(z + e_{\gamma_0}\right) + g\left(z + \lambda e_{\gamma_0}\right)\right\|^p, \left\| g\left(z + e_{\gamma_0}\right) - g\left(z + \lambda e_{\gamma_0}\right)\right\|^p \right\}
\]
\[
= \{|A\alpha(z, 1)\beta(z, 1) + B\alpha(z, \lambda)\beta(z, \lambda)|^p + |A + B\lambda|^p, |A\alpha(z, 1)\beta(z, 1) - B\alpha(z, \lambda)\beta(z, \lambda)|^p + |A - B\lambda|^p\}.
\]
If $\alpha(z, 1)\beta(z, 1) = -\alpha(z, \lambda)\beta(z, \lambda)$, then
\[
\{|A - B|^p + |A + B\lambda|^p, |A + B|^p + |A - B\lambda|^p\}
\]
\[
= \{|A + B|^p + |A + B\lambda|^p, |A - B|^p + |A - B\lambda|^p\}.
\]
This leads to a contradiction for $\lambda \neq 0$. It follows that $\alpha(z, 1)\beta(z, 1) = \alpha(z, \lambda)\beta(z, \lambda)$, and hence
\[
\|z + \lambda e_{\gamma_0}\|g\left(\frac{z + \lambda e_{\gamma_0}}{\|z + \lambda e_{\gamma_0}\|}\right) = g(z) + \lambda g(e_{\gamma_0})
\]
for all $z \in S_Z$ and $\lambda \in \mathbb{R}$. Let z_1, z_2 be in S_Z and $\lambda > \|z_1 - z_2\|/2$. Clearly,
\[
\frac{1}{1 + \lambda^2}\left\{\|g(z_1) + g(z_2)\|^p + (2\lambda)^p, \|g(z_1) - g(z_2)\|^p\right\}
\]
This implies that f is phase equivalent to g for all $z \in G$. It follows that G is phase equivalent to a linear isometry. Since the natural positive homogeneous extension G of g is phase equivalent to f, it is suffices to showing that $G : X \to Y$ is a linear isometry. By Lemma 2.3, we have $f(e_{\gamma_0}) = \pm e_{\delta_0}$ for some $\delta_0 \in \Delta$. It is easily verified that Z and W are linearly isometric to $l_p(\Gamma \setminus \{\gamma_0\})$ and $l_p(\Delta \setminus \{\delta_0\})$ respectively. From Wang’s result [13], the restriction of G to Z is a linear isometry. Set $x := \frac{z}{\|z\|} + \frac{\lambda e_{\gamma_0}}{\|z\|}$ for some $0 \neq z \in Z$ and $\lambda \in \mathbb{R}$. It follows that

$$G(z + \lambda e_{\gamma_0}) = \|z\|\|g\left(\frac{x}{\|x\|}\right)\| = \|z\|\left(\| g\left(\frac{z}{\|z\|}\right) + \lambda g(e_{\gamma_0})\|_{z}\right) = G(z) + \lambda g(e_{\gamma_0}).$$

This shows that $G : X \to Y$ is a linear isometry, which completes the proof. □

Acknowledgements. The authors cordially thank Professor Guanggui Ding for his helpful suggestions. The authors also thank the referee for several helpful comments and suggestions.

References

XUJIAN HUANG
DEPARTMENT OF MATHEMATICS
TIANJIN UNIVERSITY OF TECHNOLOGY
300384 TIANJIN, P. R. CHINA
Email address: huangxujian85@sina.cn

XIHONG JIN
DEPARTMENT OF MATHEMATICS
TIANJIN UNIVERSITY OF TECHNOLOGY
300384 TIANJIN, P. R. CHINA
Email address: jinxihong058163.com