DOI QR코드

DOI QR Code

Physical Properties of Oxide Films Formed by Plasma Anodization on Mg Alloy

  • Lee, Sung-Hyung (Gakko hojin Kitahara gakuen) ;
  • Yashiro, Hitoshi (Department of Chemistry and Biological Science, Iwate University) ;
  • Aoki, Kazuki (Department of Chemistry and Biological Science, Iwate University) ;
  • Nanao, Hidetaka (Department of Chemistry and Biological Science, Iwate University) ;
  • Kure-Chu, Song-Zhu (Materials Function and Design, Nagoya Institute of Technology)
  • 투고 : 2019.08.04
  • 심사 : 2019.09.26
  • 발행 : 2019.11.27

초록

In this work, we study physical and mechanical properties of oxide films formed on AZ91D magnesium alloy by plasma anodization at different temperatures. It is found that the higher the electrolyte temperature, the lower is the breakdown voltage of oxide layer. This is probably because films formed at higher temperatures are thinner and denser. Moreover, electrolyte temperature plays an important role in the physical properties of the films. As the electrolyte temperature increases from 20 to $50^{\circ}C$, the hardness of the oxide layer increases. Friction test against steel balls indicates that wear scars become narrower for films formed at higher temperatures because the films are harder, as indicated by the Vickers hardness. The thinner and denser nature of the oxide film formed at $50^{\circ}C$ is also advantageous for heat transfer when film is used as a heat sink. Laser flash test results show very fast heat transfer for AZ91D with plasma anodized oxide layer formed at higher temperatures.

키워드

참고문헌

  1. S. H. Lee, H. Yashiro and S.-Z. Kure-Chu, J. Korean Inst. Surf. Eng., 50, 432 (2017). https://doi.org/10.5695/JKISE.2017.50.6.432
  2. S. H. Lee, H. Yashiro and S.-Z. Kure-Chu, Korean J. Mater. Res., 28, 544 (2018). https://doi.org/10.3740/MRSK.2018.28.10.544
  3. S. H. Lee, H. Yashiro and S.-Z. Kure-Chu, Korean J. Mater. Res., 29, 5 (2019).
  4. E. K. Beauchamp, J. Am. Ceram. Soc., 54, 484 (1971). https://doi.org/10.1111/j.1151-2916.1971.tb12184.x
  5. S. Ono, K. Asami, T. Osaka and N. Masuko, J. Electrochem. Soc., 143, 62 (1996). https://doi.org/10.1149/1.1836533
  6. C.-W. Yang, Y.-H. Chang, T.-S. Lui and L.-H. Chen, Mater. Des., 40, 163 (2012). https://doi.org/10.1016/j.matdes.2012.03.018
  7. G. Liu, G. Li, A. Cai and Z. Chen, Mater. Des., 32, 121 (2011). https://doi.org/10.1016/j.matdes.2010.06.027
  8. J. Liang, L. Hu and J. Hao, Appl. Surf. Sci., 253, 4490 (2007). https://doi.org/10.1016/j.apsusc.2006.09.064
  9. Y. Zhang and C. Yan, Surf. Coat. Tech., 201, 2381 (2006). https://doi.org/10.1016/j.surfcoat.2006.04.015
  10. D. Jun, J. Liang, L. Hu, J. Hao and Q. Xue, Trans. Nonferrous Met. Soc. China, 17, 244 (2007). https://doi.org/10.1016/S1003-6326(07)60079-X
  11. J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou and T. Xu, Appl. Surf. Sci., 252, 345 (2005). https://doi.org/10.1016/j.apsusc.2005.01.007
  12. Y. K. Lee, K. Lee and T. Jung, Electrochem. Commun., 10, 1716 (2008). https://doi.org/10.1016/j.elecom.2008.08.048
  13. X. Zhang, Z. Zhao, F. Wu, Y. Wang and J. Wu, J. Mater. Sci., 42, 8523 (2007). https://doi.org/10.1007/s10853-007-1738-z
  14. C. J. Humrickhouse-Helmreich, R. Corbin and S. M. McDeavitt, J. Nucl. Mater., 446, 100 (2014). https://doi.org/10.1016/j.jnucmat.2013.10.063
  15. K. Kuniya, H. Arakawa, T. Kanai and A. Chiba, Trans. Jpn. Inst. Met., 28, 819 (1987). https://doi.org/10.2320/matertrans1960.28.819
  16. S. Masaki, S. Jung and T. Okane, J. Alloys Compd., 475, 903 (2009). https://doi.org/10.1016/j.jallcom.2008.08.067
  17. G. Yuan, G. You, S. Bai and W. Guo, J. Alloys Compd., 766, 410 (2018). https://doi.org/10.1016/j.jallcom.2018.06.370
  18. J. A. Curran and T. W. W. T. Clyne, Surf. Coatings Technol., 199, 168 (2005). https://doi.org/10.1016/j.surfcoat.2004.09.037
  19. J. A. Curran, H. Kalkanci, Y. Magurova and T. W. Clyne, Surf. Coatings Technol., 201, 8683 (2007). https://doi.org/10.1016/j.surfcoat.2006.06.050