DOI QR코드

DOI QR Code

Material and Structure Optimization of Substrate Support for Improving CVD Equipment Up Time

CVD 장비 Up Time 향상을 위한 기판 지지대의 재질 및 구조 최적화

  • Woo, Ram (School of Nano Engineering, Inje University) ;
  • Kim, Won Kyung (School of Nano & Materials Science and Engineering, Kyungpook National University)
  • 우람 (인제대학교 나노융합공학부) ;
  • 김원경 (경북대학교 나노소재공학부)
  • Received : 2019.09.02
  • Accepted : 2019.09.27
  • Published : 2019.11.27

Abstract

We study substrate support structures and materials to improve uptime and shorten preventive maintenance cycles for chemical vapor deposition equipment. In order to improve the rolling of the substrate support, the bushing device adopts a ball transfer method in which a large ball and a small ball are mixed. When the main transfer ball of the bushing part of the substrate support contacts the substrate support, the small ball also rotates simultaneously with the rotation of the main ball, minimizing the resistance that can be generated during the vertical movement of the substrate support. As a result of the improvement, the glass substrate breakage rate is reduced by more than 90 ~ 95 %, and the equipment preventive maintenance and board support replacement cycles are extended four times or more, from once a month to more than four months, and the equipment uptime is at least 15 % improved. This study proposes an optimization method for substrate support structure and material improvement of chemical vapor deposition equipment.

Keywords

References

  1. W. Kern, J. Electrochem. Soc., 137, 1887 (1990). https://doi.org/10.1149/1.2086825
  2. R. W. Davis, E. F. Moore and M. R. Zachariah, J. Cryst. Growth, 132, 513 (1993). https://doi.org/10.1016/0022-0248(93)90079-C
  3. D. A. Neamen, Semiconductor Physics and Devies; 3rd Edition, p. 210-217, McGraw-Hill, McGraw-Hill Press, New York (2011).
  4. K. W. Nam, K. H. Shin, S. O. Jung and H. J. Kim, Study on fallen particles caused in CVD process, p. 831-32, in Proceedings of the Korean Society of Precision Engineering., Jeju, Korea (2012).
  5. S. O. Kasap, Principles of Electronic Materials and Devices, 3rd Edition, p. Ch5.16-5.18, McGraw-Hill, New York (2017).
  6. D. C. Burkman, C. A. Peterson, L. A. Zazzera and R. J. Kopp, Microcontamination, 6, 57 (1988).
  7. A. Khilnani, Particles on Surfaces 1: Detection, Adhesion, and Removal, p. 129-142, Plenum, Plenum Press, New York (1988).
  8. G. J. Slusser and L. MacDowell, J. Vac. Sci. Technol., A, 5, 1649 (1987). https://doi.org/10.1116/1.574539
  9. J. R. Monkowski, Treatise on Clean Surface Technology, p. 123-148, Plenum, Plenum Press, New York (1987).
  10. W. Kern and G. L. Schnable, The Chemistry of the Semiconductor Industry, p. 225-280, Chapman and Hall, New York (1987).
  11. A. Licciardello, O. Puglisi and S. Pignataro, Appl. Phys. Lett., 48, 41 (1986). https://doi.org/10.1063/1.96755
  12. J. Ruzyllo and E. Kamieniecki, Real-time in-line testing of semiconductor wafers, US Patent, 5[661] 408 (1997).
  13. K. M. Eisele and E. Klausmann, Solid State Technol., 27, 177 (1984). https://doi.org/10.1016/0038-1101(84)90109-6
  14. W. T. Stacy, D. F. Allison and T. C. Wu, in Semiconductor Silicon 1981, p. 344, in Proceedings of the Journal of the Electrochemical Society., Pennington, NJ (1981).
  15. P. F. Schmidt and C. W. Pierce, J. Electrochem. Soc., 128, 630 (1981). https://doi.org/10.1149/1.2127472
  16. Korean Intellectual Property Office, 10-2014-0139935.
  17. Korean Intellectual Property Office, 10-2015-0125378.
  18. Korean Intellectual Property Office, 10-2019-0004973.
  19. Korean Intellectual Property Office, 10-1296966.
  20. W. D. Kim and D. C. Han, J. KSLE. Soc., 8, 64 (1992).
  21. K. Rokkaku, JSPE. Soc., 54, 28 (1987).
  22. L. D. Wedeven and T. Harris, Machine Des., 59, 72 (1987).
  23. W. D. Kim, J. KSLE. Soc., 7, 7 (1991).
  24. I. H. Choi, C. N. Park, H. J. Choi, J. K. Lee and D. W. Shin, Rolling Fatigue Life of Silicon Nitride Ceramic Balls, p. 119-126 in Proceedings of the Korean Society of Tribologists And Lubrication Engineers., Daegu, Korea (1999).
  25. B. M. Kim, S. S. Kim, D. W. Shin and S. B. Yoon, Tribological Characteristics of Sliding contact between Deferent Combinations of Ceramics, p. 296-300 in Proceedings of the Korean Society of Tribologists And Lubrication Engineers., Daegu, Korea (2004).
  26. H. Aramaki, Y. Shoda, Y. Morishita and T. Sawamoto, J. Trib. Soc., 110, 693 (1988). https://doi.org/10.1115/1.3261715
  27. B. M. Kim, S. S. Kim, D. W. Shin and S. B. Yoon, Tribological durability evaluation of structural ceramics on sliding contact, p. 193-198 in Proceedings of the Korean Society of Tribologists And Lubrication Engineers., Daegu, Korea (2004).
  28. J. E. Ban and K. W. Kim, J. KSLE. Soc., 14, 26 (1998).
  29. S. T. Jang and Y. Z. Lee, J. KSLE. Soc., 11, 11 (1995).