DOI QR코드

DOI QR Code

Effects of Chemical Composition of Ca(OH)2 and Precursors on the Properties of Fast-Curing Geopolymers

Ca(OH)2와 전구체의 화학 조성이 고속경화 지오폴리머의 물성에 미치는 영향

  • Ko, Hyunseok (Convergence Technology Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Noh, Jung Young (Department of Metallurgical and Materials Engineering, Gyeongsang National University) ;
  • Lim, Hyung Mi (Convergence Technology Division, Korea Institute of Ceramic Engineering and Technology)
  • 고현석 (한국세라믹기술원 융합기술사업단) ;
  • 노정영 (경상대학교 나노신소재공학부 금속재료공학과) ;
  • 임형미 (한국세라믹기술원 융합기술사업단)
  • Received : 2019.10.01
  • Accepted : 2019.10.15
  • Published : 2019.11.27

Abstract

Geopolymer is an alumina silicate-based ceramic material that has good heat-resistance and fire-resistance; it can be cured at room temperature, and thus its manufacturing process is simple. Geopolymer can be used as a reinforcement or floor finish for high-speed curing applications. In this manuscript, we investigate a high-speed curing geopolymer achieved by adding calcium to augment the curing rate. Metakaolin is used as the main raw material, and aqueous solutions of KOH and $K_2SiO_3$ are used as the activators. As a result of optimizing the high bending strength as a target factor for geopolymers with $SiO_2/Al_2O_3$ ratio of 4.1 ~ 4.8, the optimum ranges of the active agent are found to be $0.1{\leq}K_2O/SiO_2{\leq}0.4$ and $10{\leq}H_2O/K_2O{\leq}32.5$, and the optimum range of the curing accelerator is found to be $$0.82{\leq_-}Ca(OH)_2/Al_2O_3{\leq_-}2.87$$. The maximum flexural strength is found to be 1.35 MPa at $Ca(OH)_2/Al_2O_3=2.82$, $K_2O/SiO_2=0.3$, and $H_2O/K_2O=11.3$. The physical and thermal properties are analyzed to validate the applicability of these materials as industrial insulating parts or repairing finishing materials in construction.

Keywords

References

  1. J. A. Davidovits, Geopolymer Cement Review 2013, p.1-11, Technical papers #21, Geopolymer Institute, France (2013).
  2. A. Natali, S. Manzi and M. C. Bignozzi, Procedia Eng., 21, 1124 (2011). https://doi.org/10.1016/j.proeng.2011.11.2120
  3. B. Singh, G. Ishwarya, M. Gupta and S. Bhattacharyya, Constr. Build. Mater., 85, 78 (2015) https://doi.org/10.1016/j.conbuildmat.2015.03.036
  4. P. He, D. Jia, B. Zheng, S. Yan, J. Yuan, Z. Yang, X. Duan, J. Xu, P. Wang and Y. Zhou, Ceram. Int., 42, 5345 (2016) https://doi.org/10.1016/j.ceramint.2015.12.067
  5. T. Lin, D. Jia, P. He, M. Wang and D. Liang, Mater. Sci. Eng., A, 497, 181 (2008). https://doi.org/10.1016/j.msea.2008.06.040
  6. S. Yan, P. He, Y. Zhang, D. Jia, J. Wang, X. Duan, Z. Yang and Y. Zhou, Ceram. Int., 43, 549 (2017). https://doi.org/10.1016/j.ceramint.2016.09.192
  7. J. Yuan, P. He, D. Jia, S. Yan, D. Cai, L. Xu, Z. Yang, X. Duan, S. Wang and Y. Zhou, Y. Ceram. Int., 42, 5345 (2016). https://doi.org/10.1016/j.ceramint.2015.12.067
  8. Y.-M. Liew, C.-Y. Heah and H. Kamarudin, Prog. Mater. Sci., 83, 595 (2016). https://doi.org/10.1016/j.pmatsci.2016.08.002
  9. W. M. Kriven, J. L. Bell and M. Gordon, Ceram. Trans., 153, 227 (2003).
  10. T. Matschei, B. Lothenbach and F. P. Glasser, Cement Concrete Res., 37, 551 (2014). https://doi.org/10.1016/j.cemconres.2006.10.013