DOI QR코드

DOI QR Code

Peeling Behavior of Backsheet according to Surface Temperature of Photovoltaic Module

태양광 모듈 표면 온도 제어에 따른 백시트 박리 거동

  • Kim, Jeong-Hun (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Lee, Jun-Kyu (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Ahn, Young-Soo (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Yeo, Jeong-Gu (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Lee, Jin-Seok (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Kang, Gi-Hwan (Photovoltaic Laboratory, Korea Institute of Energy Research) ;
  • Cho, Churl-Hee (Graduate School of Energy Science and Technology, Chungnam National University)
  • 김정훈 (한국에너지기술연구원 분리변환소재연구실) ;
  • 이준규 (한국에너지기술연구원 분리변환소재연구실) ;
  • 안영수 (한국에너지기술연구원 분리변환소재연구실) ;
  • 여정구 (한국에너지기술연구원 분리변환소재연구실) ;
  • 이진석 (한국에너지기술연구원 분리변환소재연구실) ;
  • 강기환 (한국에너지기술연구원 태양광연구실) ;
  • 조철희 (충남대학교 에너지과학기술대학원)
  • Received : 2019.09.17
  • Accepted : 2019.10.15
  • Published : 2019.11.27

Abstract

In this study, we investigate the relationship between the peeling behavior of the backsheet of a photovoltaic(PV) module and its surface temperature in order facilitate removal of the backsheet from the PV module. At low temperatures, the backsheet does not peel off whereas, at high temperatures, part of the backsheet remains on the surface of the PV module after the peeling process. The backsheet material remaining on the surface of the PV module is confirmed by X-ray diffraction(XRD) analysis to be poly-ethylene(PE). Differential scanning calorimetry(DSC) is also performed to investigate the interfacial characteristics of the layers of the PV module. In particular, DSC provides the melting temperature($T_m$) of laminated ethylene vinyl acetate(EVA) and of the backsheet on the PV module. It is found that the backsheet does not peel off below the $T_m$ of ethylene of EVA, while the PE layer of the backsheet remains on the surface of the PV module above the $T_m$ of the PE. Thus, the backsheet is best removed at a temperature between the $T_m$ of ethylene and that of PE layer.

Keywords

References

  1. G. Masson and I. Kaizuka, Report IEA-PVPS T1-34 (2018).
  2. K. Komoto and J.-S. Lee, Report IEA-PVPS T12-10 (2018).
  3. European parliament, Council of the European Union, WEEE. Off. J. Eur. Union, L. 197, 38 (2012).
  4. J. S. Lee and G. H. Kang (in Korean), Mag. Korean Sol. Energy Soc., 15, 3 (2015).
  5. J.-K. Lee, J.-S. Lee, Y.-S. Ahn, G.-H. Kang, H.-E. Song, J.-I. Lee, M.-G. Kang and C.-H. Cho, Sol. Energy Mater. Sol. Cells, 160, 301 (2017). https://doi.org/10.1016/j.solmat.2016.10.034
  6. J.-K. Lee, J.-S. Lee, Y.-S. Ahn, G.-H. Kang, H.-E. Song, M.-G. Kang, Y.-H. Kim and C.-H. Cho, Prog. Photovoltaics, 26, 179 (2018). https://doi.org/10.1002/pip.2963
  7. K. J. Geretschlager, G. M. Wallner and J. Fischer, Sol. Energy Mater. Sol. Cells, 144, 451 (2016). https://doi.org/10.1016/j.solmat.2015.09.060
  8. H. J. Lee, Y. G. Park, S. H. Lee and J. H. Park (in Korean), Korean Chem. Eng. Res., 56, 156 (2018). https://doi.org/10.9713/kcer.2018.56.2.156
  9. P. G. Charalambous, G. G. Maidment, S. A. Kalogirou and K. Yiakoumetti, Appl. Therm. Eng., 27, 275 (2007). https://doi.org/10.1016/j.applthermaleng.2006.06.007
  10. M. Sander, S. Dietrich, M. Pander, M. Ebert and J. Bagdahn, Sol. Energy Mater. Sol. Cells, 111, 82 (2013). https://doi.org/10.1016/j.solmat.2012.12.031
  11. B.-M. Kim, K.-S. Lee, M.-K. Kim, G.-H. Kang, H.-K. Lee and M.-J. Park (in Korean), Proc. of 2010 KSEE Summer Conference, p. 1255-1256 (2010).
  12. W. J. Gambogi, J. G. Kopchick, T. C. Felder, S. W. MacMaster, A. Z. Bradley, B. Hamzavy, E. E. L. Kathmann, K. M. Stika, T. J. Trout, L. G. A. Garreau-Iles and T. Sample, Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, p. 2846-2850 (2013).
  13. G. Carotenuto, S. D. Nicola, M. Palomba, D. Pullini, A. Horsewell, T. W. Hansen and L. Nicolais, Nanotechnology, 23, 485705 (2012). https://doi.org/10.1088/0957-4484/23/48/485705
  14. M. Romero Saez, L. Y. Jaramillo, R. Saravanan, N. Benito, E. Pabon, E. Mosquera and F. Gracia, Express Polym. Lett., 11, 899 (2017). https://doi.org/10.3144/expresspolymlett.2017.86
  15. M. Xie, L. Jing, J. Zhou, J. Lin and H. Fu, J. Hazard. Mater., 176, 139 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.008
  16. D. Kim, N. Kim, W.-S. Hong, H. Kang, K. Lee and C. Oh, New Renewable Energy, 12, 36 (2016).
  17. R. Polansky, M. Pinkerova, M. Bartunkova and P. Prosr, J. Electrical Eng., 64, 361 (2013). https://doi.org/10.2478/jee-2013-0054
  18. A. Yuliestyan, A. A. Cuadri, M. Garcia-Morales and P. Partal, Mater. Des., 96, 180 (2016). https://doi.org/10.1016/j.matdes.2016.02.003
  19. J. A. Reyes-Labarta, M. M. Olaya and A. Marcilla, Polymer, 47, 8194 (2006). https://doi.org/10.1016/j.polymer.2006.09.054
  20. B. Demirel, A. Yaras and H. Elcicek (in Turkish), BAU Fen Bil. Enst. Dergisi Cilt, 13, 26 (2011).
  21. D. Langevin, J. Grenet and J. M. Saiter, Eur. Polym. J., 30, 339 (1994). https://doi.org/10.1016/0014-3057(94)90297-6
  22. J. A. Reyes-Labarta, M. M. Olaya, A. Marcilla and J. Appl. Polym. Sci., 102, 2015 (2006). https://doi.org/10.1002/app.23969
  23. L. A. Quinchia, M. A. Delgado, C. Valencia, J. M. Franco and C. Gallegos, Environ. Sci. Technol., 43, 2060 (2009). https://doi.org/10.1021/es803047m