DOI QR코드

DOI QR Code

Evaluation of Visible-light activation of Cu2O-TiO2 (P-N type) Semiconductor Nanomaterials prepared by Ultrasonic-assisted Synthesis

초음파 합성 적용 Cu2O-TiO2 (P-N 타입) 반도체 나노물질의 가시광 활성 평가

  • Shin, Seung-ho (Department of Environmental & Public Health, Daegu Health College) ;
  • Choi, Jeong-Hak (Department of Environmental Engineering, Catholic University of Pusan) ;
  • Kim, Ji-hoon (Department of Environmental & Public Health, Daegu Health College) ;
  • Lee, Joon Yeob (Life Environmental R&D Center, Chemtopia Co. Ltd.)
  • 신승호 (대구보건대학교 환경보건과) ;
  • 최정학 (부산가톨릭대학교 환경공학과) ;
  • 김지훈 (대구보건대학교 환경보건과) ;
  • 이준엽 ((주)켐토피아 생활환경연구센터)
  • Received : 2019.10.02
  • Accepted : 2019.11.14
  • Published : 2019.11.30

Abstract

This study evaluated the photocatalytic oxidation efficiency of volatile organic compounds by $Cu_2O-TiO_2$ under visible-light irradiation. $Cu_2O-TiO_2$ was synthesized by an ultrasonic-assisted method. The XRD result indicated successful p-n type photocatalysts. However, no diffraction peaks belonging to $TiO_2$ were observed for the $Cu_2O-TiO_2$. The Uv-vis spectra result revealed that the synthesized $Cu_2O-TiO_2$ can be activated under visible-light irradiation. The FE-TEM/EDS result showed the formation of synthesized nanocomposites in the commercial P25 $TiO_2$, the undoped $TiO_2$, and $Cu_2O-TiO_2$ and componential analysis in the undoped $TiO_2$ and $Cu_2O-TiO_2$. The photocatalytic oxidation efficiencies of benzene, toluene, ethylbenzene, and o-xylene with $Cu_2O-TiO_2$ were higher than those of P25 $TiO_2$ and undoped $TiO_2$. These results indicate that the prepared $Cu_2O-TiO_2$ photocatalyst can be applied effectively to control gaseous BTEX.

Keywords

References

  1. Chen, J., Qiu, F., Xu, W., Cao, S., 2015, Recent progress in enhancing photocatalytic efficiency of $TiO_2$-based materials, Appl. Cata. A, 495, 131-140. https://doi.org/10.1016/j.apcata.2015.02.013
  2. Fagan, R., McCormack, D. E., Dionysiou, D. D., Pillai, S. C., 2016, A Review of solar and visible light active $TiO_2$ photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mat. Sci. Semicon. Proc., 42, 2-14. https://doi.org/10.1016/j.mssp.2015.07.052
  3. Flannigan, D. J., Suslick, K. S., 2005, Plasma formation and temperature measurement during single-bubble cavitation, Nature, 434, 52-55. https://doi.org/10.1038/nature03361
  4. Ghows, N., Entezari, M. H., 2012, Sono-stynthesis of core-shell nanocrystal (CdS/$TiO_2$) without surfactant, Ultrason. Sonochem., 19, 1070-1078. https://doi.org/10.1016/j.ultsonch.2012.01.009
  5. Henderson, M. A., 2011, A Surface science perspective on $TiO_2$ photocatalysis, Surf. Sci. Rep., 66(6), 185-297. https://doi.org/10.1016/j.surfrep.2011.01.001
  6. Hosseini-Sarvari, M., Jafari, F., Mohajeri, A., Hassani, N., 2018, $Cu_2O$/$TiO_2$ nanoparticles as visible light photocatalysts concerning C(sp2)-P bond formation, Catal. Sci. Technol., 8, 4044-4051. https://doi.org/10.1039/C8CY00822A
  7. Huo, Y., Zhu, J., Li, G., Li, H., 2007, An Active La/$TiO_2$ photocatalyst prepared by ultrasonication-assisted -sol-gel method followed by treatment under supercritical conditions, J. Mol. Catal. A, 278(1-2), 237-243. https://doi.org/10.1016/j.molcata.2007.07.054
  8. Jeong, J., Sekiguchi, K., Lee, W., Sakamoto, K., 2005, Photodegradation of gaseous Volatile Organic Compounds (VOCs) using $TiO_2$ photoirradiated by an ozone-producing UV lamp: decomposition character -istics, identification of by-products and watersoluble organic intermediates, J. Photoch. Photobio. A, 169(3), 279-287. https://doi.org/10.1016/j.jphotochem.2004.07.014
  9. Jo, W. K., Kang, H. J., Kim, K. H., 2012, Application of Light-emitting-diodes to annular-type photocatalytic reactor for removal of indoor-level benzene and toluene, J. Environ. Sci., 21(5), 563-572.
  10. Lee, J. Y., Hong, W. H., Kim, W., Park, S. H., Jo, W. K., 2017, Visible light-driven decomposition of ${\alpha}$-pinene and toluene over N and Fe dual-doped one -dimensional titania nanostructures with improved efficiency, Mater. Res. Bull., 94, 313-321. https://doi.org/10.1016/j.materresbull.2017.06.004
  11. Lee, J. Y., Jo, W. K., 2012, Control of methyl tertiary-butyl ether via carbon-doped photocatalysts under visible -Light irradiation, Environ. Eng. Res., 17(4), 179-184. https://doi.org/10.4491/eer.2012.17.4.179
  12. Li, D., Chien, C., Deora, S., Chang, P., Moulin, E., Lu, J. G., 2011, Prototype of a scalable core-shell $Cu_2O$/$TiO_2$ solar cell, Chem. Phys. Lett., 501, 446-450. https://doi.org/10.1016/j.cplett.2010.11.064
  13. Lin, X., Zhou, R., Zhang, J., Sheng, X., 2010, Preparation and photocatalytic activity of $Cu_2O$ nanoparticles, Mater. Sci.-Pol., 28, 504-511.
  14. Luo, Y., Ollis, D. F., 1996, Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity, J. Catal., 163, 1-11. https://doi.org/10.1006/jcat.1996.0299
  15. Ochiai, T., Fujishima, A., 2012, Photoelectrochemical properties of $TiO_2$ photocatalyst and its applications for environmental purification, J. Photochem. Photobiol. C, 13, 247-262. https://doi.org/10.1016/j.jphotochemrev.2012.07.001
  16. Robert, D., 2007, Photosensitization of $TiO_2$ by $M_xO_y$ and $M_xS_y$ nanoparticles for heterogeneous photocatalysis applications, Catal. Today, 122, 20-26. https://doi.org/10.1016/j.cattod.2007.01.060
  17. Senevirathna, M. K. I., Pitagala, P. K. D. P., Tennakone, K., 2005, Water photoreduction with $Cu_2O$ quantum dots on $TiO_2$ nano-particles, J. Photochem. Photociol. A: Chem., 171, 257-259. https://doi.org/10.1016/j.jphotochem.2004.10.018
  18. Singh, R., Pal, B., 2013, Study of excited charge carrier's lifetime for the observed photoluminescence and photocatalyti activity of CdS nanostructures of different shapes, J. Mole. Catal. A, 371, 77-85. https://doi.org/10.1016/j.molcata.2013.01.024
  19. Yang, R., Zhang, Y., Xu, Q., Mo, J., 2007, A mass transfer method for measuring the reaction coefficients of a photocatalyst, Atmos. Environ., 41, 1221-1229. https://doi.org/10.1016/j.atmosenv.2006.09.043
  20. Van Gerven, T., Mul, G., Moulijn, J., Stankiewicz, A., 2007, A Review of intensification of photocatalytic processes, Chem. Eng. Process, 46, 781-789. https://doi.org/10.1016/j.cep.2007.05.012
  21. Xia, J., Jiang, D., Chen, M., Li, D., Zhu, J., Lu, X., Yan, C., 2010, Preparation and characterization of monodisperse Ce-doped $TiO_2$ microspheres with visible light photocatalytic activity, Colloids Surf. A, 372, 107-114. https://doi.org/10.1016/j.colsurfa.2010.09.037
  22. Zhao, J., Yang, X., 2003, Photocatalytic oxidation for indoor air purification: a literature review, Build. Environ, 38, 645-654. https://doi.org/10.1016/S0360-1323(02)00212-3