
JKSCI
한국컴퓨터정보학회논문지

Journal of The Korea Society of Computer and Information

Vol. 24 No. 11, pp. 51-59, November 2019

https://doi.org/10.9708/jksci.2019.24.11.051

Web access prediction based on parallel deep learning

1)Gantur Togtokh*, Kyung-Chang Kim**

* Assistant Professor, Dept. of Information Technology, Ulaan Baatar University, Mongolia

**Professor, Dept. of Computer Engineering, Hongik University, Seoul, Korea

[Abstract]

Due to the exponential growth of access information on the web, the need for predicting web users’

next access has increased. Various models such as markov models, deep neural networks, support vector

machines, and fuzzy inference models were proposed to handle web access prediction. For deep

learning based on neural network models, training time on large-scale web usage data is very huge. To

address this problem, deep neural network models are trained on cluster of computers in parallel. In

this paper, we investigated impact of several important spark parameters related to data partitions,

shuffling, compression, and locality (basic spark parameters) for training Multi-Layer Perceptron model

on Spark standalone cluster. Then based on the investigation, we tuned basic spark parameters for

training Multi-Layer Perceptron model and used it for tuning Spark when training Multi-Layer

Perceptron model for web access prediction. Through experiments, we showed the accuracy of web

access prediction based on our proposed web access prediction model. In addition, we also showed

performance improvement in training time based on our spark basic parameters tuning for training

Multi-Layer Perceptron model over default spark parameters configuration.

▸Key words: Apache Spark, Neural network, Parallel deep learning, Parameter tuning, Web access prediction

[요 약]

웹에서 정보 접근에 대한 폭발적인 주문으로 웹 사용자의 다음 접근 페이지를 예측하는 필요성

이 대두되었다. 웹 접근 예측을 위해 마코브(markov) 모델, 딥 신경망, 벡터 머신, 퍼지 추론 모델

등 많은 모델이 제안되었다. 신경망 모델에 기반한 딥러닝 기법에서 대규모 웹 사용 데이터에 대

한 학습 시간이 엄청 길어진다. 이 문제를 해결하기 위하여 딥 신경망 모델에서는 학습을 여러

컴퓨터에 동시에, 즉 병렬로 학습시킨다. 본 논문에서는 먼저 스파크 클러스터에서 다층

Perceptron 모델을 학습 시킬 때 중요한 데이터 분할, shuffling, 압축, locality와 관련된 기본 파라미

터들이 얼마만큼 영향을 미치는지 살펴보았다. 그 다음 웹 접근 예측을 위해 다층 Perceptron 모델

을 학습 시킬 때 성능을 높이기 위하여 이들 스파크 파라미터들을 튜닝 하였다. 실험을 통하여

논문에서 제안한 스파크 파라미터 튜닝을 통한 웹 접근 예측 모델이 파라미터 튜닝을 하지 않았

을 경우와 비교하여 웹 접근 예측에 대한 정확성과 성능 향상의 효과를 보였다.

▸주제어: 아파치 스파크, 신경망, 병렬 딥러닝, 파라미터 튜닝, 웹 접근 예측

∙First Author: Gantur Togtokh, Corresponding Author: Kyung-Chang Kim
 *Gantur Togtokh (gantur.t@gmail.com), Dept. of Information Technology, Ulaan Baatar University
 **Kyung-Chang Kim (kckim@hongik.ac.kr), Dept. of Computer Engineering, Hongik University
∙Received: 2019. 10. 31, Revised: 2019. 11. 27, Accepted: 2019. 11. 27.

Copyright ⓒ 2019 The Korea Society of Computer and Information
 http://www.ksci.re.kr pISSN:1598-849X | eISSN:2383-9945

52 Journal of The Korea Society of Computer and Information

I. Introduction

Due to information shift from local site to the

web, access latency and server overloading to the

web server have been increasing. It results in

increased delay to access web server and to

download web pages to client. One of the main

solutions to solve the delay is web prefetching. Web

prefetching reduces access latency for web user by

fetching user’s next web page to client cache

before user request it. Web prefetching is based on

the result of web access prediction. Web access

prediction is predicting a web page which user may

visit next, while the user is visiting current page.

Web prefetching is not the only area of utilizing

web access prediction. There are many other areas

that utilizes web access prediction such as web

personalization, web recommendation, etc. One of

the models that is used for web access prediction is

the deep neural networks. In the web access

prediction model based on deep neural network as

shown Figure 1, web logs are analyzed by data

preprocessing techniques in web usage mining,

then web users’ next access is predicted on the

output of data preprocessing (users’ sessions) using

deep neural networks since web access prediction

is the classification problem that try to predict

user’s next access based on the history of the

user’s previously visited web pages [1]. Web usage

mining (WUM) is one of the categories of web

mining which is used to mine web logs to discover

useful patterns and knowledge [2]. Web usage

mining has three phases: data preprocessing,

pattern discovery and pattern analysis. Data

cleaning, user identification and session

identification are basic steps of data preprocessing

in WUM [3]. For deep neural network models,

training time in training deep neural network

models on large-scale web usage data is very

much. Because recent web usage data is very large.

To speedup training time in training deep neural

network models, the deep neural network models is

run on the cluster of computers in parallel

(distributed deep neural network). In this paper, we

chose the Multi-Layer Perceptron model as deep

neural network model for web access prediction. In

order to train Multi-Layer Perceptron rapidly on

large-scale users’ sessions for web access

prediction, we used the Spark that is the current

state of the art distributed computing framework

for processing big data. Spark has component

(Spark MLlib) which have distributed

implementation of various machine learning

algorithms. Spark uses Resilient Distributed Dataset

(RDD) [4] abstraction which is a fault-tolerant

distributed collection of data over nodes of cluster.

Each partition of RDD can be computed on

different nodes of the cluster in parallel. RDDs

support two types of operations: transformations,

actions. Transformations create new RDDs from an

existing one and actions return any result of

computation on RDDs.

Fig. 1. A typical architecture of web access prediction

model based on deep neural network.

Using Spark, application performance depends

on parameters tuning (parameters optimization).

Web access prediction based on parallel deep learning 53

Tuning spark parameters is a complex and

challenging task [5]. Because spark has 150

configurable parameters and default configuration

is enough for run a spark program, and impact of

parameters may vary from application to

application and also from cluster to cluster [6].

Therefore, in the some case, tuning spark

parameters is needed in application-independent

manner. The related works regarding spark

parameters tuning in chapter II does not consider

deep neural network models as investigation

benchmarks for investigating their spark parameter

tuning. However, Multi-Layer Perceptron training

is computation-intensive application like K-means

and we investigate the impact of several important

Spark parameters related to data partitions,

shuffling, compression, and locality for training

Multi-Layer Perceptron on Spark standalone

cluster because the performance of applications on

Spark may vary from application to application [4].

Then, based on experiment result of impact of

spark parameters on MLP, we obtain spark basic

parameters tuning algorithm on MLP training. We

then use it for tuning spark parameters when

training Multi-Layer Perceptron model for web

access prediction on Spark.

The rest of this paper is organized as follows.

Section II introduce related works for web access

prediction and spark parameter tuning. Section III

considers spark-based web access prediction and

spark parameters tuning for training MLP model.

Section IV shows the experiment results. Section V

concludes the work.

II. Related works

1. Parameter tuning in Spark

In the Spark, as we mentioned in introduction,

application performance is depend on parameters

tuning. Tuning spark parameters is time consuming

and challenging task [5]. Because Spark has 150

configurable parameters, default configuration is

enough for run a spark program, and impact of

parameters on performance may vary from

application to application and also from cluster to

cluster [6]. Therefore, for some application, Spark is

needed application-independent parameter tuning. In

this section, we will discuss several works related to

spark parameter tuning and consider important

parameters to be used for tuning spark when training

Multi-Layer Perceptron model.

Spark guidelines documentation [7] summarized

followings as tuning guidelines: 1) Data serialization

plays an important role in the performance of any

distributed application. Spark provides two

serialization libraries: Java and Kryo. Java is default

serialization and based on Java’s

ObjectOutputStream framework. It is flexible but

quit slow. Kryo serialization is based on Kryo

library, and faster and compact than java

serialization. [7] recommended to try Kryo

serialization in any network intensive application. 2)

Memory is used for two purposes in spark:

execution and storage. Execution memory is used

for computation and storage memory is used for

caching and distributing internal data across the

cluster. Execution and storage share a unified

region in spark. There are two relevant

configurations related to Execution and storage

memory. Default configuration is adapted for the

most of application. In the most case user does not

need to change the default configuration. 3) Level

of parallelism must be adapted to utilize cluster

resources fully. They recommend 2-3 tasks per

core in the cluster. 4) Data locality gives biggest

impact on the performance of spark application. If

data and code are together then computation is

performed fast. Spark tries to schedule all tasks to

place to closest to its data. However it is not always

possible. In situation there is no unprocessed data

on any idle executor but there is unprocessed data

another busy executors, Spark waits until busy

executors finish its tasks and process its

unprocessed data, or immediately start new task on

idle executors to process unprocessed data where

54 Journal of The Korea Society of Computer and Information

placed in busy executors in another nodes. In the

second case it requires data movement between

nodes. In spark, we can configure the waiting time

for waiting to start new task on idle executors. [7]

recommended increasing the waiting time when our

tasks are long and with poor locality. In contrast,

we should decrease waiting time when our tasks

are too short and with poor locality.

[8] was first attempt to examine important spark

parameters on real world cluster with a

high-performance computing (HPC) setup. It mainly

focused on parallelism configuration and network

interfaces (Ethernet or InfiniBand). It used two

applications: sorting and k-means as workload for

testing. Main results of this work are summarized

as follows 1) in the case of k-means which is

computation-intensive application, configuring level

of parallelism (number of data partitions) by

allocating single data partition per core obtains better

performance. For sort-by-key which is shuffling

intensive application, allocating two data partition per

core obtains better performance than single data

partitions per core. 2) Number of executors per

worker node or number of cores per executer is

configurable parameter. For the two applications,

experiment shows that executers with large number

of cores obtain better performance. 3) For network

interface test, InfiniBand interface is better on

sort-by-key application than Ethernet interface.

Alpine Data [9] propose tips for tuning spark to

system administrators. It is for spark Yarn cluster.

Such as data partitions, optimization, garbage

collection, and some checks are covered in the

tips. It is available online.

[5] and [6] investigates impact of important 12

tunable spark parameters with regards to shuffling,

compression and serialization on the short-by-key,

and shuffling, and k-means applications using

Marenostrum III computing infrastructure of the

Barcelona Supercomputing Center. Then based on

the results of impact, a trail-and-error

methodology, which requires little number of

experimental runs is derived and propose a

systematic methodology for generating candidate

configurations that can adapt to any spark

platform.

[10] investigates impact of data volume on the

performance of applications such as word count,

Grep, Sort, Nave Bayes and K-Means.

2. Web access prediction based on neural networks

In recent years, the needs of predicting web

user’s next access have been increasing, and

several model are used on web access prediction

area such as markov models, deep neural

networks, support vector machines, and fuzzy

interference models. in this paper, we chose the

Multi-Layer Perceptron model as deep neural

network for web access prediction. Multi-Layer

Perceptron (MLP) is considered as a type of deep

learning models since there are multiple hidden

layers of nodes between input and output layers. In

MLP, nodes of any layer in the network connect to

nodes of next layer in a graph which directs

forward. Connections between nodes in the neural

network represent weights of nodes. Figure 2 shows

an example of Multi-Layer Perceptron with three

hidden layers.

Fig. 2. Sample architecture of Multi-Layer Perceptron

model with three hidden layers

Here we discuss web access prediction based on

Artificial Neural Network (ANN).

Om et al. [12] are proposed a prediction model

uses feed forward artificial neural network and

k-mean clustering. In this work, author used ANN

for finding closest user sessions cluster with

Web access prediction based on parallel deep learning 55

current user’s session. K-mean clustering is used

for clustering user sessions by its similarity. Then

feed forward ANN model is trained on these session

clusters and used to find highest probability cluster

with current user’s visited web pages sequence.

Pruthvi [13] proposed a next page prediction

model which uses ANN. In this model, ANN

implemented in map-reduce programming model in

Hadoop framework for training large amount of

dataset rapidly. This paper is aimed to reduce the

time of the training process.

Vidushi et al. [14] proposed a model uses

self-organizing map (SOM) and ANN. This model

has three layers: clustering, self-organizing map

and neural network. In clustering, dataset is

filtered using clustering approach. Cluster that

represents the high usage pages will selected for

further processing. Next, SOM is applied to analysis

web pages usage and prediction to assign weightage

to various web pages. Finally, ANN is trained to

perform next page prediction.

III. Spark-based MLP for web access

prediction

In order to train multi-layer perceptron model

for web access prediction on large-scale input

rapidly, we used Spark for distributed training.

1. Spark basic parameters for tuning on MLP

training

In order to tune spark parameters for training

MLP model for web access prediction, we

investigate the impact of spark several important

parameters. In this paper, we consider the

following 8 parameters related to data partitions,

shuffling, compression, and locality as spark basic

parameters for tuning on MLP training.

1. spark.serializer: This parameter determines

class to be used for serializing objects [11]. Default

is java serialization. In the spark documentation, it

is defined that Kyro serialization is faster than java

serialization. And [9] recommended Kyro

serialization. However, [5] is also considered this

parameter impact on its test benchmarks, we

consider its impact on MLP because that

parameters impact may vary from application to

application, cluster to cluster [6].

2. spark.defualt.parallelism: This parameter

determines level of parallelism (data partitions). For

distributed shuffle operations like reduceByKey and

join, the largest number of partitions in a parent

RDD is defined default [11]. For operations like with

no parent RDDs, default is depends on the cluster

manager e.g. number of cores on the local

machine, total number of cores on all executor

nodes or ext. [11] In our experiment, we set default

as 1 task per core. In the spark documentation [7],

it is recommended 2-3 task per core. In [8], for

computation-intensive application like K-means, it

results in better performance on 1 task per core.

However, MLP is computation-intensive like

K-means. We also consider its impact on MLP

training.

3. spark.executor.instances: This parameter

defines number of executors per worker node. [8]

shows that increasing number of executors per

worker node degrades performance on k-means.

4. spark.executor.cores: This parameter defines

number of core per executer. [8] shows that

increasing number of cores per executor by

decreasing number of executors increases

performance on k-means.

5. spark.shuffle.manager: This parameter defines

implementation to use for shuffling data. Default is

sort, available implementations on our spark

version for experiment is sort and tungsten-sort.

[6] choose between tungsten-sort and hash. we

choose between sort and tungsten-sort.

56 Journal of The Korea Society of Computer and Information

6. spark.shuffle.compress: This parameter

defines whether data partitions are compressed

before transferred over the network or not. Default

is true. It’s clear that if the amount of data that

transfer over network is a lot, it’s better to

compressed than uncompressed. However, [6]

investigate this parameter on its benchmark, we

investigated it on MLP.

7. spark.shuffle.ReduceLocality: This parameter

defines whether scheduling all reducers to the

same executor or any executor. This parameter not

mentioned on spark configuration document [11]

explicitly. Default is true in our spark version. We

investigated impact this parameter on different

number of data partitions.

8. spark.locality.wait: This parameter defines how

long wait between locality levels. There are four

locality levels [11]: process, node, rack and then

any. Default value is 3sec. In Spark documentation

[7], it is recommended to increase these setting if

tasks are long and with poor locality. [5] and [6] did

not consider impact of locality.

2. Web page prediction using MLP

We obtain spark basic parameters tuning algorithm

on MLP as shown in Figure 3 and use it when we train

MLP model on Spark for web access prediction. In

the algorithm, parameters that have more than 3%

impact are used. spark.executor.cores,

spark.executor.instances parameters were well

enough configured for MLP model training by default.

Two main trials of the algorithm is based on

observation from investigation that if number of data

partitions is equal to number of cores for application,

spark schedules to distribute number of data

partitions to all executors equally in the case of

scheduling all reducers to any executors

(Spark.shuffle.ReduceLocality = false). Using the

algorithm, we can tune spark important parameters

for training MLP model with three experimental trials.

Fig. 3. A spark basic parameter tuning on MLP as block diagram

Spark basic parameters tuning algorithm is

based on this observation and experiment result of

parameters impact in explained later.

Fig. 4. Modeling users' sessions for web access prediction

on MLP model

In our MLP model for web access prediction as

shown in Figure 4, last web page in a user session

is passed as output and remaining web pages in the

user session are passed as input. If length of users’

sessions is k, pages from 1 to k-1 in a user session

are passed to input nodes and the k-th page in the

user session is passed to output node.

Web access prediction based on parallel deep learning 57

IV. Experiments

1. Experiment specification

Specification of the experiment environment is as

follows. The computers used in our experiment

have all Intel® core i3-1430, CPU is 3.4GHz, 4GB

RAM. The operating system is windows 10, and

Spark-2.3.2 is used.

2. Datasets

We used two well-known server access logs:

NASA [15] and Clarknet [16] that are available for

free. The NASA dataset contains seven days’ worth

of all HTTP request to the NASA Kennedy Space

Center server in Florida. Clarknet dataset contains

two weeks’ worth of all HTTP request to the

ClarkNet server. The log format of the two datasets

are command log format.

3. Preprocessing

Before modeling users’ sessions for web access

prediction, large-scale raw web log must be

preprocessed by data preprocessing steps in WUM:

data cleaning, user identification, and session

identification, and formed as users’ sessions. In data

cleaning, all irrelevant log records, that are graphic

file records, error status records, are removed. Then

too rear and frequent pages are also removed. In user

identification, individual users are identified by the

same IP address. In the session identification, we used

uniform 15 minutes page stay-time as threshold

value, when we create new sessions.

4. Prediction results

We tested the accuracy of web access prediction

based on our model on both the NASA and

ClarkNet datasets.

We tuned MLP model for web access prediction by

hyper parameter, which has [500, 700, and 1000]

hidden layer structure, 0.005 learning rate and 32

batch size, with sufficient number of training epochs.

In addition, we divided the datasets into 70% training

and 30% testing. We randomly oversampled minority

classes by 25% because users’ sessions based on

these datasets were totally unbalanced.

Figure 5 shows accuracy of prediction based on

our proposed web access prediction model on test

datasets.

Fig. 5. Prediction accuracy

5. Impact of spark basic parameters on MLP

In order to tune spark parameters on MLP for

prediction, we investigated the impact of spark

basic parameters on spark standalone cluster with

1 master node and 4 worker nodes.

For experiment, we measured parameters

impact in terms of training time by comparing with

default parameters configuration on dataset with

10000 records of 10 dimensions after 10 training

epoch. Figure 6 shows experiment result of impact

of some basic spark parameters for training MLP.

We show the parameters that have impact with

more than 2%. Figure 6 shows that parameters

related to locality have major impact on the

performance, while parameters related to locality

are not configured enough on MLP training by

spark default configuration.

Fig. 6. Impact of basic spark parameters on MLP training

58 Journal of The Korea Society of Computer and Information

In addition, we investigated impact of number of

data partitions for training MLP. Figure 7 shows

experiment result of impact of number of data

partitions for training MLP on two different lengths

of users’ sessions.

Fig. 7. Impact of the number of data partitions on MLP training

6. Performance result of models for training MLP

In order to investigate the performance of

distributed deep nerual network on Spark, we

conducted the experiment for training MLP. In

order to investigate performance of distrusted deep

learning on spark, we performed various

experiment for training MLP. The experiments for

training the MLP model include: (1) MLP training

without distributed training, (2) MLP training on

Spark with spark default parameter configuration

and (3) MLP training on Spark with configuration

using spark basic parameter tuning algorithm on

MLP. The result is shown in Table 1.

Models for training MLP
Training time in seconds

after 10 epoch

MLP training without

distributed training
330

MLP training on Spark with

spark default parameter

configuration /4 worker nodes/

280

MLP training on Spark with

configuration based on spark

basic parameter tuning

algorithm /4 worker nodes /

147

Table 1. Comparison of models for training MLP

The experiment result in Table 1 for training

MLP shows that the training time using our Spark

basic parameters tuning algorithm is a lot less

than the training time to train Multi-Layer

Perceptron on Spark using spark default parameter

configuration. In either case, the training time is

less than without distributed training.

V. Conclusion & future work

We used deep neural network model for web

access prediction. To reduce training time. deep

neural network models are trained on cluster of

computers in distributed manner. Apache spark is

distributed computing framework leveraged on

main memory for processing big data. In the Spark,

depending on parameter tuning, application

performance is different. Tuning spark parameters

is a complex and challenging task. In this paper, we

investigated the impact of some important spark

parameters on Multi-Layer Perceptron training.

Then based on these observation and the results of

experiment on the impact of spark basic

parameters on MLP, we tuned spark basic

parameters for training Multi-Layer Perceptron,

and used it for web access prediction on Spark.

The experiment for distributed deep neural network

on Spark shows that, in terms of training time, the

parameter configuration based on tuning the spark

basic parameters on Multi-Layer Perceptron

performs better (i.e. reduces training time) than

the training time using spark default parameter

configuration. In the future, we will consider

recurrent neural network (RNN) for web access

prediction on Spark.

REFERENCES

[1] Mamoun A.Awad, Issa Khalil, “Prediction of User’s web-browsing

behavior: Application of Markov Model”, IEEE Transactions on

Systems, Man, And Cybernetics – Part B: Cybernetic, vol. 42,

no. 4, pp. 1131-1142, August 2012.

[2] Wang, Yan “Web Mining and Knowledge Discovery of Usage

Web access prediction based on parallel deep learning 59

Patterns”, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.28.6743& rep=rep1&type=pdf,2000.

[3] Giovanna Castellano, Anna M. Fanelli, and Maria A. Torsello,

“Web Usage Mining: Discovering Usage Patterns for Web

Applications”, Advanced Techniques in Web Intelligence-2, SCI

452, pp. 75–104, 2013.

[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,

M.J.Franklin, S. Shenker, I. Stoica “Resilient distributed datasets:

a fault-tolerant abstraction for in-memory cluster computing” 9th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI) (2012), pp. 15-28

[5] AnastasiosGounaris, Jordi Torres, “A Methodlogy for Spark

Parameter Tuning”, Big Data Research, Volume 11, pages 22-32,

2018

[6] P. Petridis, A. Gounaris, J. Torres “Spark parameter tuning via

trial-and-error,” Advances in Big Data – Proceedings of the 2nd

INNS Conference on Big Data (2016), pp. 226-237

[7] Spark guidelines documentatin for tunning https://spark.apache.

org/docs/latest/tuning.html

[8] R. Tous, A. Gounaris, C. Tripiana, J. Torres, S. Girona, E.

Ayguadé, J.Labarta, Y. Becerra, D. Carrera, M. Valero “Spark

deployment and performance evaluation on the marenostrum

supercomputer” IEEE International Conference on Big Data (Big

Data) (2015), pp. 299-306

[9] Alpine Data tuning tip http://techsuppdiva.github.io/spark1.6.htm

[10] A.J. Awan, M. Brorsson, V. Vlassov, E. Ayguade “How data

volume affects spark data data analysitcs on a scale-up server”

(2015)

[11] Spark parameters configuration http://spark.apache.org/docs/latest

/configuration.htm

[12] Om Prakash Mandal, Hiteshware Kumar Azad “Web Access

Prediction Model using Clustering and Artificial Neural

Network”, IJERT, Vol.3 Issue 9, 2014.

[13] Pruthvi, “Web-Users’ Browsing behavior Prediction by

Implementing Neural Network in MapReduce”, IJAFRC, Vol.1

Issue 5, 2014

[14] Vidushi, Yashpal Singh, “SOM Improved Neural Network

Approach for Next Page Prediction” International Journal of

Computer Science and Mobile Computing, Volume 4, Issue 5,

pg. 175-181, May 2015

[15] NASA: web access log dataset: http://ita.ee.lbl.gov/html/contrib/

NASA-HTTP.html

[16] ClarkNet: web access log dataset: http://ita.ee.lbl.gov/html/contrib

/ClarkNet-HTTP.html

Authors

Gantur Togtokh received the B.S. in

Computer Engineering from Ulaan Baatar

University, M.S. in Computer Engineering

from Soongsil University in 2010 and Ph.D

in Computer Engineering from Hongik

University in 2019. Currently, Dr. Togtokh is assistant

professor in the Department of Computer Engineering at

Ulaan Baatar University, Mongolia. He is interested in image

processing, bid data analysis, sensor databases, web databases,

and deep learning.

Kyung-Chang Kim received the B.S. in

Computer Science from Hongik University in

1978, M.S. in Computer Science from KAIST

in 1980 and Ph.D in Computer Science from

University of Texas at Austin in 1990.

Dr. Kim joined the faculty of the Department of Computer

Engineering at Hongik University, Seoul, Korea, in 1991. He

is currently a Professor in the Department of Computer

Engineering, Hongik University. He is interested in main

memory databases, sensor databases, web databases, Internet

of Things and big data processing.

