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[Abstract] 

Due to the exponential growth of access information on the web, the need for predicting web users’ 

next access has increased. Various models such as markov models, deep neural networks, support vector 

machines, and fuzzy inference models were proposed to handle web access prediction. For deep 

learning based on neural network models, training time on large-scale web usage data is very huge. To 

address this problem, deep neural network models are trained on cluster of computers in parallel. In 

this paper, we investigated impact of several important spark parameters related to data partitions, 

shuffling, compression, and locality (basic spark parameters) for training Multi-Layer Perceptron model 

on Spark standalone cluster. Then based on the investigation, we tuned basic spark parameters for 

training Multi-Layer Perceptron model and used it for tuning Spark when training Multi-Layer 

Perceptron model for web access prediction. Through experiments, we showed the accuracy of web 

access prediction based on our proposed web access prediction model. In addition, we also showed 

performance improvement in training time based on our spark basic parameters tuning for training 

Multi-Layer Perceptron model over default spark parameters configuration.
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[요   약]

웹에서 정보 접근에 대한 폭발적인 주문으로 웹 사용자의 다음 접근 페이지를 예측하는 필요성

이 대두되었다. 웹 접근 예측을 위해 마코브(markov) 모델, 딥 신경망, 벡터 머신, 퍼지 추론 모델 

등 많은 모델이 제안되었다. 신경망 모델에 기반한 딥러닝 기법에서 대규모 웹 사용 데이터에 대

한 학습 시간이 엄청 길어진다. 이 문제를 해결하기 위하여 딥 신경망 모델에서는 학습을 여러 

컴퓨터에 동시에, 즉 병렬로 학습시킨다. 본 논문에서는 먼저 스파크 클러스터에서 다층 

Perceptron 모델을 학습 시킬 때 중요한 데이터 분할, shuffling, 압축, locality와 관련된 기본 파라미

터들이 얼마만큼 영향을 미치는지 살펴보았다. 그 다음 웹 접근 예측을 위해 다층 Perceptron 모델

을 학습 시킬 때 성능을 높이기 위하여 이들 스파크 파라미터들을 튜닝 하였다. 실험을 통하여 

논문에서 제안한 스파크 파라미터 튜닝을 통한 웹 접근 예측 모델이 파라미터 튜닝을 하지 않았

을 경우와 비교하여 웹 접근 예측에 대한 정확성과 성능 향상의 효과를 보였다.

▸주제어: 아파치 스파크, 신경망, 병렬 딥러닝, 파라미터 튜닝, 웹 접근 예측
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I. Introduction

Due to information shift from local site to the 

web, access latency and server overloading to the 

web server have been increasing. It results in 

increased delay to access web server and to 

download web pages to client. One of the main 

solutions to solve the delay is web prefetching. Web 

prefetching reduces access latency for web user by 

fetching user’s next web page to client cache 

before user request it. Web prefetching is based on 

the result of web access prediction. Web access 

prediction is predicting a web page which user may 

visit next, while the user is visiting current page. 

Web prefetching is not the only area of utilizing 

web access prediction. There are many other areas 

that utilizes web access prediction such as web 

personalization, web recommendation, etc. One of 

the models that is used for web access prediction is 

the deep neural networks. In the web access 

prediction model based on deep neural network as 

shown Figure 1, web logs are analyzed by data 

preprocessing techniques in web usage mining, 

then web users’ next access is predicted on the 

output of data preprocessing (users’ sessions) using 

deep neural networks since web access prediction 

is the classification problem that try to predict 

user’s next access based on the history of the 

user’s previously visited web pages [1]. Web usage 

mining (WUM) is one of the categories of web 

mining which is used to mine web logs to discover 

useful patterns and knowledge [2]. Web usage 

mining has three phases: data preprocessing, 

pattern discovery and pattern analysis. Data 

cleaning, user identification and session 

identification are basic steps of data preprocessing 

in WUM [3]. For deep neural network models, 

training time in training deep neural network 

models on large-scale web usage data is very 

much. Because recent web usage data is very large. 

To speedup training time in training deep neural 

network models, the deep neural network models is 

run on the cluster of computers in parallel 

(distributed deep neural network). In this paper, we 

chose the Multi-Layer Perceptron model as deep 

neural network model for web access prediction. In 

order to train Multi-Layer Perceptron rapidly on 

large-scale users’ sessions for web access 

prediction, we used the Spark  that is the current 

state of the art distributed computing framework 

for processing big data. Spark has component 

(Spark MLlib) which have distributed 

implementation of various machine learning 

algorithms. Spark uses Resilient Distributed Dataset 

(RDD) [4] abstraction which is a fault-tolerant 

distributed collection of data over nodes of cluster.  

Each partition of RDD can be computed on 

different nodes of the cluster in parallel. RDDs 

support two types of operations: transformations, 

actions. Transformations create new RDDs from an 

existing one and actions return any result of 

computation on RDDs.

Fig. 1. A typical architecture of web access prediction 

model based on deep neural network.

Using Spark, application performance depends 

on parameters tuning (parameters optimization). 
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Tuning spark parameters is a complex and 

challenging task [5]. Because spark has 150 

configurable parameters and default configuration 

is enough for run a spark program, and impact of 

parameters may vary from application to 

application and also from cluster to cluster [6].  

Therefore, in the some case, tuning spark 

parameters is needed in application-independent 

manner. The related works regarding spark 

parameters tuning in chapter II does not consider 

deep neural network models as investigation 

benchmarks for investigating their spark parameter 

tuning.  However, Multi-Layer Perceptron training 

is computation-intensive application like K-means 

and we investigate the impact of several important 

Spark parameters related to data partitions, 

shuffling, compression, and locality for training 

Multi-Layer Perceptron on Spark standalone 

cluster because the performance of applications on 

Spark may vary from application to application [4]. 

Then, based on experiment result of impact of 

spark parameters on MLP, we obtain spark basic 

parameters tuning algorithm on MLP training.  We 

then use it for tuning spark parameters when 

training Multi-Layer Perceptron model for web 

access prediction on Spark. 

The rest of this paper is organized as follows. 

Section II introduce related works for web access 

prediction and spark parameter tuning.  Section III 

considers spark-based web access prediction and 

spark parameters tuning for training MLP model. 

Section IV shows the experiment results. Section V 

concludes the work.

II. Related works

1. Parameter tuning in Spark

In the Spark, as we mentioned in introduction, 

application performance is depend on parameters 

tuning. Tuning spark parameters is time consuming 

and challenging task [5]. Because Spark has 150 

configurable parameters,  default configuration is 

enough for run a spark program, and impact of 

parameters on performance may vary from 

application to application and also from cluster to 

cluster [6]. Therefore, for some application, Spark is 

needed application-independent parameter tuning. In 

this section, we will discuss several works related to 

spark parameter tuning and consider important 

parameters to be used for tuning spark when training 

Multi-Layer Perceptron model. 

Spark guidelines documentation [7] summarized 

followings as tuning guidelines: 1) Data serialization 

plays an important role in the performance of any 

distributed application. Spark provides two 

serialization libraries: Java and Kryo. Java is default 

serialization and based on Java’s 

ObjectOutputStream framework. It is flexible but 

quit slow. Kryo serialization is based on Kryo 

library, and faster and compact than java 

serialization. [7] recommended to try Kryo 

serialization in any network intensive application. 2)  

Memory is used for two purposes in spark: 

execution and storage. Execution memory is used 

for computation and storage memory is used for 

caching and distributing internal data across the 

cluster. Execution and storage share a unified 

region in spark. There are two relevant 

configurations related to Execution and storage 

memory. Default configuration is adapted for the 

most of application. In the most case user does not 

need to change the default configuration.  3) Level 

of parallelism must be adapted to utilize cluster 

resources fully. They recommend 2-3 tasks per 

core in the cluster. 4) Data locality gives biggest 

impact on the performance of spark application. If 

data and code are together then computation is 

performed fast. Spark tries to schedule all tasks to 

place to closest to its data. However it is not always 

possible. In situation there is no unprocessed data 

on any idle executor but there is unprocessed data 

another busy executors, Spark waits until busy 

executors finish its tasks and process its 

unprocessed data, or immediately start new task on 

idle executors to process unprocessed data where 
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placed in busy executors in another nodes. In the 

second case it requires data movement between 

nodes. In spark, we can configure the waiting time 

for waiting to start new task on idle executors.  [7] 

recommended increasing the waiting time when our 

tasks are long and with poor locality. In contrast, 

we should decrease waiting time when our tasks 

are too short and with poor locality.  

[8] was first attempt to examine important spark 

parameters on real world cluster with a 

high-performance computing (HPC) setup. It mainly 

focused on parallelism configuration and network 

interfaces (Ethernet or InfiniBand). It used two 

applications: sorting and k-means as workload for 

testing.  Main results of this work are summarized 

as follows 1) in the case of k-means which is 

computation-intensive application, configuring level 

of parallelism (number of data partitions) by 

allocating single data partition per core obtains better 

performance.  For sort-by-key which is shuffling 

intensive application, allocating two data partition per 

core obtains better performance than single data 

partitions per core. 2) Number of executors per 

worker node or number of cores per executer is 

configurable parameter. For the two applications, 

experiment shows that executers with large number 

of cores obtain better performance. 3) For network 

interface test, InfiniBand interface is better on 

sort-by-key application than Ethernet interface.

Alpine Data [9] propose tips for tuning spark to 

system administrators. It is for spark Yarn cluster. 

Such as data partitions, optimization, garbage 

collection, and some checks are covered in the 

tips. It is available online. 

[5] and [6] investigates impact of important 12 

tunable spark parameters with regards to shuffling, 

compression and serialization on the short-by-key, 

and shuffling, and k-means applications using 

Marenostrum III computing infrastructure of the 

Barcelona Supercomputing Center.  Then based on 

the results of impact, a trail-and-error 

methodology, which requires little number of 

experimental runs is derived and propose a 

systematic methodology for generating candidate 

configurations that can adapt to any spark 

platform. 

[10] investigates impact of data volume on the 

performance of applications such as word count, 

Grep, Sort, Nave Bayes and K-Means.

2. Web access prediction based on neural networks

In recent years, the needs of predicting web 

user’s next access have been increasing, and 

several model are used on web access prediction 

area such as markov models, deep neural 

networks, support vector machines, and fuzzy 

interference models. in this paper, we chose the 

Multi-Layer Perceptron model as deep neural 

network for web access prediction.  Multi-Layer 

Perceptron (MLP) is considered as a type of deep 

learning models since there are multiple hidden 

layers of nodes between input and output layers. In 

MLP, nodes of any layer in the network connect to 

nodes of next layer in a graph which directs 

forward. Connections between nodes in the neural 

network represent weights of nodes. Figure 2 shows 

an example of Multi-Layer Perceptron with three 

hidden layers.

Fig. 2. Sample architecture of Multi-Layer Perceptron 

model with three hidden layers

Here we discuss web access prediction based on 

Artificial Neural Network (ANN). 

Om et al. [12] are proposed a prediction model 

uses feed forward artificial neural network and 

k-mean clustering. In this work, author used ANN 

for finding closest user sessions cluster with 
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current user’s session. K-mean clustering is used 

for clustering user sessions by its similarity. Then 

feed forward ANN model is trained on these session 

clusters and used to find highest probability cluster 

with current user’s visited web pages sequence.

Pruthvi [13] proposed a next page prediction 

model which uses ANN. In this model, ANN 

implemented in map-reduce programming model in 

Hadoop framework for training large amount of 

dataset rapidly. This paper is aimed to reduce the 

time of the training process. 

Vidushi et al. [14] proposed a model uses 

self-organizing map (SOM) and ANN. This model 

has three layers: clustering, self-organizing map 

and neural network. In clustering, dataset is 

filtered using clustering approach. Cluster that 

represents the high usage pages will selected for 

further processing. Next, SOM is applied to analysis 

web pages usage and prediction to assign weightage 

to various web pages. Finally, ANN is trained to 

perform next page prediction.

III. Spark-based MLP for web access 

prediction

In order to train multi-layer perceptron model 

for web access prediction on large-scale input 

rapidly, we used Spark for distributed training.

1. Spark basic parameters for tuning on MLP 

training

In order to tune spark parameters for training 

MLP model for web access prediction, we 

investigate the impact of spark several important 

parameters. In this paper, we consider the 

following 8 parameters related to data partitions, 

shuffling, compression, and locality as spark basic 

parameters for tuning on MLP training.

1. spark.serializer: This parameter determines 

class to be used for serializing objects [11]. Default 

is java serialization.  In the spark documentation, it 

is defined that Kyro serialization is faster than java 

serialization. And [9] recommended Kyro 

serialization. However, [5] is also considered this 

parameter impact on its test benchmarks, we 

consider its impact on MLP because that 

parameters impact may vary from application to 

application, cluster to cluster [6]. 

2. spark.defualt.parallelism: This parameter 

determines level of parallelism (data partitions). For 

distributed shuffle operations like reduceByKey and 

join, the largest number of partitions in a parent 

RDD is defined default [11]. For operations like with 

no parent RDDs, default is depends on the cluster 

manager e.g. number of cores on the local 

machine, total number of cores on all executor 

nodes or ext. [11] In our experiment, we set default 

as 1 task per core. In the spark documentation [7], 

it is recommended 2-3 task per core. In [8], for 

computation-intensive application like K-means, it 

results in better performance on 1 task per core. 

However, MLP is computation-intensive like 

K-means. We also consider its impact on MLP 

training. 

3. spark.executor.instances: This parameter 

defines number of executors per worker node. [8] 

shows that increasing number of executors per 

worker node degrades performance on k-means.

4. spark.executor.cores: This parameter defines 

number of core per executer. [8] shows that 

increasing number of cores per executor by 

decreasing number of executors increases 

performance on k-means.

5. spark.shuffle.manager: This parameter defines 

implementation to use for shuffling data. Default is 

sort, available implementations on our spark 

version for experiment is sort and tungsten-sort. 

[6] choose between tungsten-sort and hash. we 

choose between sort and tungsten-sort.
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6. spark.shuffle.compress: This parameter 

defines whether data partitions are compressed 

before transferred over the network or not. Default 

is true. It’s clear that if the amount of data that 

transfer over network is a lot, it’s better to 

compressed than uncompressed.  However, [6] 

investigate this parameter on its benchmark, we 

investigated it on MLP.

7. spark.shuffle.ReduceLocality: This parameter 

defines whether scheduling all reducers to the 

same executor or any executor. This parameter not 

mentioned on spark configuration document [11] 

explicitly. Default is true in our spark version. We 

investigated impact this parameter on different 

number of data partitions.

8. spark.locality.wait: This parameter defines how 

long wait between locality levels. There are four 

locality levels [11]: process, node, rack and then 

any. Default value is 3sec. In Spark documentation 

[7], it is recommended to increase these setting if 

tasks are long and with poor locality. [5] and [6] did 

not consider impact of locality.

2. Web page prediction using MLP 

We obtain spark basic parameters tuning algorithm 

on MLP as shown in Figure 3 and use it when we train 

MLP model on Spark for web access prediction. In 

the algorithm, parameters that have more than 3% 

impact are used. spark.executor.cores, 

spark.executor.instances parameters were well 

enough configured for MLP model training by default. 

Two main trials of the algorithm is based on 

observation from investigation that if number of data 

partitions is equal to number of cores for application, 

spark schedules to distribute number of data 

partitions to all executors equally in the case of 

scheduling all reducers to any executors 

(Spark.shuffle.ReduceLocality = false). Using the 

algorithm, we can tune spark important parameters 

for training MLP model with three experimental trials.

Fig. 3. A spark basic parameter tuning on MLP as block diagram

Spark basic parameters tuning algorithm is 

based on this observation and experiment result of 

parameters impact in explained later.

Fig. 4. Modeling users' sessions for web access prediction 

on MLP model

In our MLP model for web access prediction as 

shown in  Figure 4, last web page in a user session 

is passed as output and remaining web pages in the 

user session are passed as input. If length of users’ 

sessions is k, pages from 1 to k-1 in a user session 

are passed to input nodes and the k-th page in the 

user session is passed to output node.
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IV. Experiments

1. Experiment specification

Specification of the experiment environment is as 

follows. The computers used in our experiment 

have all Intel® core i3-1430, CPU is 3.4GHz, 4GB 

RAM. The operating system is windows 10, and 

Spark-2.3.2 is used.

2. Datasets

We used two well-known server access logs: 

NASA [15] and Clarknet [16] that are available for 

free. The NASA dataset contains seven days’ worth 

of all HTTP request to the NASA Kennedy Space 

Center server in Florida. Clarknet dataset contains 

two weeks’ worth of all HTTP request to the 

ClarkNet server. The log format of the two datasets 

are command log format.

3. Preprocessing

Before modeling users’ sessions for web access 

prediction, large-scale raw web log must be 

preprocessed by data preprocessing steps in WUM: 

data cleaning, user identification, and session 

identification, and formed as users’ sessions. In data 

cleaning, all irrelevant log records, that are graphic 

file records, error status records, are removed. Then 

too rear and frequent pages are also removed. In user 

identification, individual users are identified by the 

same IP address. In the session identification, we used 

uniform 15 minutes page stay-time as threshold 

value, when we create new sessions.

4. Prediction results

We tested the accuracy of web access prediction 

based on our model on both the NASA and 

ClarkNet datasets. 

We tuned MLP model for web access prediction by 

hyper parameter, which has [500, 700, and 1000] 

hidden layer structure, 0.005 learning rate and 32 

batch size, with sufficient number of training epochs. 

In addition, we divided the datasets into 70% training 

and 30% testing.  We randomly oversampled minority 

classes by 25% because users’ sessions based on 

these datasets were totally unbalanced.

Figure 5 shows accuracy of prediction based on 

our proposed web access prediction model on test 

datasets.

Fig. 5. Prediction accuracy

5. Impact of spark basic parameters on MLP

In order to tune spark parameters on MLP for 

prediction, we investigated the impact of spark 

basic parameters on spark standalone cluster with 

1 master node and 4 worker nodes.  

For experiment, we measured parameters 

impact in terms of training time by comparing with 

default parameters configuration on dataset with 

10000 records of 10 dimensions after 10 training 

epoch.  Figure 6 shows experiment result of impact 

of some basic spark parameters for training MLP. 

We show the parameters that have impact with 

more than 2%. Figure 6 shows that parameters 

related to locality have major impact on the 

performance, while parameters related to locality 

are not configured enough on MLP training by 

spark default configuration. 

Fig. 6. Impact of basic spark parameters on MLP training
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In addition, we investigated impact of number of 

data partitions for training MLP. Figure 7 shows 

experiment result of impact of number of data 

partitions for training MLP on two different lengths 

of users’ sessions.

Fig. 7. Impact of the number of data partitions on MLP training

6. Performance result of models for training MLP

In order to investigate the performance of 

distributed deep nerual network on Spark, we 

conducted the experiment for training MLP. In 

order to investigate performance of distrusted deep 

learning on spark, we performed various 

experiment for training MLP. The experiments for 

training  the MLP model include: (1) MLP training 

without distributed training, (2) MLP training on 

Spark with spark default parameter configuration 

and (3) MLP training on Spark with configuration 

using spark basic parameter tuning algorithm on 

MLP. The result is shown in Table 1. 

Models for training MLP
Training time in seconds

after 10 epoch

MLP training without 

distributed training 
330

MLP training on Spark with 

spark default parameter 

configuration /4 worker nodes/

280

MLP training on Spark with 

configuration based on  spark 

basic parameter tuning 

algorithm  /4 worker nodes /

147

Table 1. Comparison of models for training MLP

The experiment result in Table 1 for training 

MLP shows that the training time using our Spark 

basic parameters tuning algorithm  is a lot less 

than the training time to train Multi-Layer 

Perceptron on Spark using spark default parameter 

configuration. In either case, the training time is 

less than without distributed training.

V. Conclusion & future work

We used deep neural network model for web 

access prediction.  To reduce training time. deep 

neural network models are trained on cluster of 

computers in distributed manner. Apache spark is 

distributed computing framework leveraged on 

main memory for processing big data. In the Spark, 

depending on parameter tuning, application 

performance is different. Tuning spark parameters 

is a complex and challenging task. In this paper, we 

investigated the impact of some important spark 

parameters on Multi-Layer Perceptron training. 

Then based on these observation and the results of 

experiment on the impact of spark basic 

parameters on MLP, we tuned spark basic 

parameters for training Multi-Layer Perceptron, 

and used it for web access prediction on Spark. 

The experiment for distributed deep neural network 

on Spark shows that, in terms of training time, the 

parameter configuration based on tuning the spark 

basic parameters on Multi-Layer Perceptron 

performs better (i.e. reduces training time) than  

the training time using spark default parameter 

configuration. In the future, we will consider 

recurrent neural network (RNN) for web access 

prediction on Spark.
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