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[Abstract] 

The partial inverse optimization problem is an interesting variant of the inverse optimization problem 

in which the given instance of an optimization problem need to be modified so that a prescribed partial 

solution can constitute a part of an optimal solution in the modified instance. In this paper, we 

consider the traveling salesman problem defined on the line ( on the line) which has many 

applications such as item delivery systems, the collection of objects from storage shelves, and so on. It 

is worth studying the partial inverse  on the line, defined as follows. We are given  requests 

on the line, and a sequence of  requests that need to be served consecutively. Each request has a 

specific position on the real line and should be served by the server traveling on the line. The task is 

to modify as little as possible the position vector associated with  requests so that the prescribed 

sequence can constitute a part of the optimal solution (minimum Hamiltonian cycle) of  on the 

line. In this paper, we show that the partial inverse  on the line and its variant can be solved in 

polynomial time when the sever is equiped with a specific internal algorithm Forward Trip or with a 

general optimal algorithm.

▸Key words: Inverse Optimization, Partial Inverse Problem, Traveling Salesman Problem, Poly-time 

Algorithm, TSP on the Line

[요   약]

부분역최적화는 역최적화의 흥미로운 변형으로, 주어진 최적화문제와 그 문제의 부분해가 주어

지면 이 부분해가 최적해에 포함되도록 문제를 최소한으로 수정하는 문제이다. 이 논문은 라인 

위에서 정의되는 순환외판원문제( )를 다루는데, 이는 배달시스템, 창고 선반에서 물건을 수집

하는 것, 등의 많은 응용을 가진다. 라인 위에서 위치하는 개의 일이 주어지고 이 중 연속적으

로 처리해야하는 일 개가 부분적으로 주어진다. 각각의 일은 라인 위의 특정 장소에 위치하고 

라인을 움직이는 서버에 의해 처리되어야 한다. 우리의 임무는 개의 일이 최적해에서 연속적으

로 처리되도록 개의 일의 위치를 라인 위에서 최소한으로 조정하는 것이다. 이 논문에서 이 문

제와 이 문제의 다양한 변종을 다항시간 내에 푸는 알고리즘을 개발한다. 구체적으로, 서버가 특

정한 Forward Trip이라는 특정한 내부 알고리즘을 사용하는 경우와 일반적인 최적 알고리즘을 사

용하는 경우에 대한 부분역최적화를 다룬다.

▸주제어: 역최적화, 부분역최적화, 순환외판원문제, 다항알고리즘, 라인 위에서의 TSP
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I. Introduction

Given a problem, we usually aim to find the 

optimal solution. However, it is not trivial to find 

the best solution, especially in the case where the 

given problem is intrinsically hard to solve. The 

traveling salesman problem( for short) is the 

one of such problems.  

On the other hand, it is relatively easy to get a 

feasible solution, even for the hard optimization 

problems. The inverse optimization problem is 

defined with the goal of making the prescribed 

feasible solution optimal in the new instance rather 

than finding an optimal solution[1-3].  The inverse 

optimization has been studied for many 

combinatorial optimization problem such as the 

shortest path problem, the minimum spanning tree 

problem, the maximum independent set problem, 

the minimum graph coloring problem,  , and so 

on[4-13].

The partial inverse optimization problem is an 

interesting variant of the inverse optimization 

problem in which a partial solution is given instead 

of a whole feasible solution. The objective is to 

modify the least possible the instance of the 

problem so that the prescribed partial solution 

becomes a part of the optimal solution in the 

modified instance. The partial inverse problem has 

been studied for the assignment problem, minimum 

cut problem, the shortest path problem,  , and 

so on[14-16].

For  , the inverse optimization and the 

partial inverse optimization problems have been 

studied by [8, 17]. In [8], the authors show that the 

inverse  against the closest neighbor 

algorithm can be solved in polynomial time, and 

the problem against 2-opt is NP-hard when the 

edge length are restricted to 1 or 2. In [17], the 

partial inverse  is shown to be NP-hard 

against both Closest Neighbor, and 2-opt. 

In this paper, we study the partial inverse 

traveling salesman problem defined on a special 

metric space, the real line. While  is the one 

of the most well-known NP-hard problem[18], 

on the line becomes trivial. For  on the line 

space, the inverse problem is studied by [8] and it 

is shown that the inverse traveling salesman 

problem can be solved in log time. However, 

the partial inverse problem for  on the line 

has not been studied yet.

In practice,  on the line ( , for short) 

has many applications such as robotic welding, 

item delivery systems, and the collection of objects 

from storage shelves, and so on. In practice, we 

may have some partial solution for  . It can 

be a list of objects that need to be collected in 

order, or a list of items that need to be delivered 

consecutively. It is worth studying its partial 

inverse version where the given partial solution 

can become a part of an optimal solution for 

 .

The partial inverse traveling salesman problem 

on the line is defined as follows and we denote it by

 . 

We deal with two versions of partial inverse 

traveling salesman problem on the line. The one is 

defined with a partial solution of  which is a 

subsequence of requests that need to be served 

consecutively. The other is defined with a subset of 

requests with a specific prescribed order(e.g., 

precedence conditions). We denote the former by 

  and the latter  . 

Definition 1.  . 

Given  requests on the horizontal line, and a 

sequence of  requests,   is to modify as 

little as possible the positions of some requests on 

the line so that the given sequence of  requests 

can be can be a part of the optimal 

-solution. 
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Definition 2.  . 

Given  requests on the horizontal line, and 

requests with precedence conditions in the 

prescribed order,   is to modify as little 

as possible the positions of some requests on the 

line so that the given  requests can be served in 

the prescribed order by the server in the optimal 

-solution, while satisfying the precedence 

conditions between requests. 

This paper is organized as follows: In Section II, 

we introduce the partial inverse traveling salesman 

problem on the line against a specific algorithm. In 

Section III, we  discuss the polynomial time 

solvability of the partial inverse traveling salesman 

problem on the line against any optimal algorithm. 

We consider in Section IV the partial inverse 

traveling salesman problem on the line with 

precedence conditions, and discuss the relation 

with the minimum cost flow problem. We then 

conclude the paper.

II. Partial Inverse Traveling Salesman 

Problems on the Line against a 

Specific Algorithm

Let us consider the partial inverse traveling 

salesman problem on the line against a specific 

algorithm  for  , denoted by   . In 

[4], the authors introduced the inverse problem 

against a specific algorithm. The objective is to 

determine a new instance at a minimum cost (with 

minimum modification) such that the given feasible 

solution can be selected as a best solution when 

applying the algorithm. 

In   , we are given  requests 

dispersed along a horizontal line space, and 

requests that need to be served consecutively by 

the server. The server decides the order to serve 

the requests by using its specific internal algorithm 

 in order to minimize the makespan, i.e., the time 

until all requests have been served. It may often 

happen that the given  requests cannot be visited 

in the prescribed sequential order in the optimal 

tour returned by the algorithm. The objective of 

  is to modify as little as possible the 

positions of some requests on the line in such a 

way that the given sequence  requests can 

constitute a part of the best solution returned by 

 .

As a specific algorithm for solving  on the 

line space, we consider the greedy algorithm, called 

Forward Trip (, for short).  starts the trip 

from the leftmost request on the line and satisfies 

all the requests in its forward trip; no request can 

be served on the way back. It is clear that  is 

an optimal algorithm for  on the line (

for short). 

Note that an instance of  can be described 

as a position vector   ⋯  of  requests 

on the real line space. Then   can be 

defined as follows.

Definition. Given a position vector   ⋯ 

of  requests on the real line and a sequence 

   ⋯  of  requests,   is to 

find a new position vector   ⋯   such that 

the given sequence can be a part of the optimal 

tour returned by  in the new instance, and the 

total deviation ║  ║ between the original and 

new  position vectors becomes minimum under the 

-norm.

Focusing on the given  requests that need to be 

served consecutively (without preemption), we 

consider the following sets of indices. We denote by 

  ∈  ⋯   ≤  the indices of the 

requests located on the left-hand side with respect 

to the request  , and denote by 
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  ∈ ⋯   ≥  the indices of the 

requests originally located on the right-hand side 

with respect to the request . 

Then, one can rewrite   as follows. 

  min 
  



               

subject to 

max∈  ≤  ≤  ≤⋯≤  ≤ min∈        

            

Proposition 1.   has an optimal 

solution such that  ≤  if  ≤  for any 

 ∈  ⋯.

Proof. Let   ⋯   be an optimal solution 

of  . Assume that for some 

 ∈  ⋯, we have  ≤  and  ≥ . 

Now we consider another feasible solution ′ such 

that ′   ′   and ′   for any  ≠  . 

It is easy to see that ′ is at least as good as the 

given optimal solution . By repeating this, we can 

obtain an optimal solution for   such 

that  ≤  if  ≤  for any    .

■

Due to Proposition 1, one can assume without 

loss of generality that    ≤    ≤⋯≤  . 

Then, we can rewrite   as the problem 

of solving the following    subproblems: 

  min 
  



  

subject to    

 ≤⋯≤  ≤    ≤⋯≤    

or

   ≤  ≤⋯≤  ≤    ≤⋯≤ 

or

   ≤    ≤  ≤⋯≤  ≤    ≤⋯≤    

or

⋯

or

   ≤    ≤⋯≤  ≤  ≤⋯≤ 

It is straightforward to see that each of these 

subproblems is a special case of the isotonic 

median regression problem[19-21] In [20], the 

PAV-algorithm (Pool Adjacent Violaters) is 

proposed for solving the isotonic median regression 

problem, and this algorithm solves each 

subproblem of   in time log in 

the worst case. This leads to the following result.

Proposition 2.   can be solved in 

polynomial time.

Proof. One can solve   by applying 

the  PAV algorithm to the     problems, and 

the new position vector (the optimal solution) which 

has the minimum deviation value.                  

           

■

III. Partial Inverse Traveling Salesman 

Problems on the Line against Any 

Optimal Algorithm

In this section, we consider the partial inverse 

traveling salesman problem on the line against any 

general optimal algorithm rather than a specific 

algorithm for  . We denote this problem by 

  . 

In  , the requests on the line can 

be  served during both forward and backward trips, 

while in   , the requests can be served 

only on the forward trip. It is easy to see that the 

result of Proposition 1 still holds for 

  .
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We assume that the server starts the trip by 

visiting the request  and finishes the trip by 

returning to that request. Let  and  be the 

leftmost and rightmost request on the line with 

 ≤   ≤ . 

Then, one can observe that any instance of 

  admits an optimal Hamiltonian cycle 

   ⋯    if the associated position 

vector   ⋯   satisfies the following 

conditions  and :

 if  ≤    ≤ , 

        ≤    ≤⋯≤                   and  

          ≤    ≤⋯≤  ≤ 

 ≤  ≤    ≤⋯≤    ≤ 

   

  if  ≤    ≤ ,

      ≤    ≤⋯≤                   and  

          ≤    ≤    ≤⋯≤ 

 ≤  ≤  ≤    ≤ 

Based on these results, we devise an optimal 

algorithm for  , using the 

PAV-algorithm for solving the special case of the 

isotonic median regression.

When an original position vector   ⋯  

and a sequence    ⋯  of  requests in 

the increasing order are given, our algorithm 

computes a new vector 

 
 ⋯

⋯
⋯⋯ for each 

  with  ≤   ≤  that minimizes the 

quantity 
  



  , while satisfying the following:

 ∀∈  ⋯   

  By using the PAV-algorithm, determine 

∀∈⋯ by solving the following problems. 

In the case  ≤    ≤ , 

  min 
  



  

subject to 

      
≤    ≤⋯≤ 




≤    ≤⋯≤  ≤  ≤   and

 ≤    ≤⋯≤    ≤ 

In the case  ≤    ≤ ,

  min 
  



  

subject to 


≤    ≤⋯≤ 




≤    ≤⋯≤   and

 ≤  ≤  ≤⋯≤ 
  ≤ 

For each  with  ≤   ≤ , the 

PAV-algorithm [16] solve this problem in time 

log. Hence, our algorithm computes the best 

solution for   with the minimum 

deviation with respect to the -norm in time 

 log.

Proposition 3. The overall computational 

complexity for   is  log.

IV. Partial Inverse Traveling Salesman 

Problems on the Line with Precedence 

Constraints

In the previous sections, we have considered the 

partial inverse traveling salesman problem on the 

line, defined with the prescribed partial solution. In 

this section, we consider an interesting variant of 

  where instead of a sequence of 

requests, the precedence conditions  ≺  are 

imposed on some requests. We mean by  ≺   

that the request  needs to be served before , 

however the other requests can be served between 

 and  by the server. We assume that the 

precedence conditions are imposed on  requests, 

i.e.,  ≺  ≺⋯≺ . We call this problem the 
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partial inverse traveling salesman problem on the 

line with the precedence conditions, and denote it 

by   .

Let us consider   against . Let 

Ω   ≺  be the set of the pairs of 

requests with precedence conditions. Then, the 

problem   can be formulated as 

follows:

  min 
  



               

subject to

    ≥  ∀∈Ω              

By linearization, we obtain the following model. 

  min 
  




  

           

subject to

    
  

    ∀  ⋯     

    ≥  ∀∈Ω              


  


≥  ∀  ⋯             

Let  and   be the dual variables 

corresponding to the first and second constraints 

of the problem  , respectively. Then, the dual 

of the problem   can be written as follows.

  max 
  



                

subject to


  ∈Ω

   
 ∈Ω

    ∀  ⋯      

             ≤  ≤  ∀  ⋯            

              ≥  ∀∈Ω               

or equivalently,

  min  
  



                

subject to


  ∈Ω

   
  ∈Ω

     ∀  ⋯

  ≤  ≤  ∀  ⋯             

  ≥  ∀∈Ω                      

Using this formulation, we will show that 

  can be reduced to the minimum 

cost flow problem (, for short). We construct 

an instance of  as follows: 

w Graph structure:

     , with   ⋯∪ and   

       Ω∪     ⋯∪.

w Arc capacity:

     ∞, if ∀∈Ω , 

          ∀  ⋯

   and    

w Arc cost:

      , if ∀∈Ω , 

           ∀  ⋯

   and    

w Node balance: 

       

  and    ∀  ⋯

w Let be   the flow on each arc ∈Ω .

Proposition 4.   can be reduced to 

the minimum cost flow problem and thus can be 

solved in polynomial time.

Proof. Given an instance   of  , 

we have just constructed an instance of . It 

remains to us to show that a feasible solution of 

  is feasible for the constructed 
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Problems Complexity Status

  poly-time solvable

  poly-time solvable

  poly-time solvable

   unknown

Table 1. Complexity Status of Problemsinstance of , with the same objective value, 

and vice versa. 

Given a feasible solution    of  , we 

can find a feasible solution for  by setting 

     ∀∈Ω ,         , if 

 ≥ , and        , if  ≤  , and by 

setting      
  



max. Clearly, this is a 

feasible solution for .

We can also find a feasible solution    for 

   using a feasible solution    for 

 by setting      ∀∈Ω and 

       for any   ⋯.

Hence,      can be reduced to the 

minimum cost flow problem and can be solved in 

polynomial time.               

■

V. Conclusions

In this paper, we have studied the partial inverse 

traveling salesman problem on the line against any 

optimal algorithm as well as against a specific 

algorithm for  . When a sequence of some 

requests is given as a partial solution, 

  and   turn out to be 

polynomially solvable by using the PAV-algorithm 

devised for the isotonic median regression problem. 

When precedence conditions are given instead of a 

sequence of requests, we show that  

is reducible to the minimum cost flow problem, one 

of the most well-known network optimization 

problem. The obtained results are summarized in 

the following table.

Our paper contributes to the inverse optimization 

literature by investigating the computational 

complexity of the partial inverse traveling salesman 

problem on the line, which has not yet been 

studied to the best of our knowledge.

This study has also some limitations. First, the 

complexity status for   has not been 

investigated yet. Second, even though the 

algorithms we proposed for solving  

and   are theoretically correct, they 

have not yet been used for solving the real 

examples. The complexity status for 

  and the computation part remain 

as a future work. In addition, it would be an 

interesting future research to consider the partial 

inverse traveling salesman problem on some other 

metric space such as trees and lattices.
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