DOI QR코드

DOI QR Code

Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging (Invited paper)

  • Kus, Arkadiusz (Warsaw University of Technology, Institute of Micromechanics and Photonics) ;
  • Krauze, Wojciech (Warsaw University of Technology, Institute of Micromechanics and Photonics) ;
  • Makowski, Piotr L. (Warsaw University of Technology, Institute of Micromechanics and Photonics) ;
  • Kujawinska, Malgorzata (Warsaw University of Technology, Institute of Micromechanics and Photonics)
  • 투고 : 2018.09.08
  • 심사 : 2018.12.11
  • 발행 : 2019.02.12

초록

In this paper, we demonstrate the current concepts in holographic tomography (HT) realized within limited angular range with illumination scanning. The presented solutions are based on the work performed at Warsaw University of Technology in Poland and put in context with the state of the art in HT. Along with the theoretical framework for HT, the optimum reconstruction process and data visualization are described in detail. The paper is concluded with the description of hardware configuration and the visualization of tomographic reconstruction, which is calculated using a provided processing path.

키워드

참고문헌

  1. K. R. Lee et al., Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications, Sensors (Basel, Switzerland) 13 (2013), 4170-4191. https://doi.org/10.3390/s130404170
  2. Z. Wang et al., Tissue refractive index as marker of disease, J. Biomed. Opt. 16 (2011), no. 11, 116017. https://doi.org/10.1117/1.3656732
  3. G. Popescu, Quantitative Phase Imaging of Cells and Tissues, McGraw Hill Professional, March 2011.
  4. B. Kemper et al., Investigation of living pancreas tumor cells by digital holographic microscopyy, J. Biomed. Opt. 11 (2006), no. 3, 34005. https://doi.org/10.1117/1.2204609
  5. P. Bon et al., Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells, Opt. Express 17 (2009), no. 15, 13080. https://doi.org/10.1364/OE.17.013080
  6. N. Streibl, Three-dimensional imaging by a microscope, JOSA A2 (1985), no. 2, 121-127. https://doi.org/10.1364/JOSAA.2.000121
  7. M. Oheim et al., Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches, Adv. Drug Deliv. Rev. 58 (2006), no. 7, 788-808. https://doi.org/10.1016/j.addr.2006.07.005
  8. B. M. Michalska et al., Insight into the fission mechanism by quantitative characterization of Drp1 protein distribution in the living cell, Scienti. Rep. 8 (2018), no. 8122, 1-15. https://doi.org/10.1038/s41598-017-17765-5
  9. D. Jin et al., Tomographic phase microscopy : Principles and applications in bioimaging, JOSA B 34 (2017), no. 5, B64-B77. https://doi.org/10.1364/JOSAB.34.000B64
  10. G. Popescu and Y. Park, Quantitative phase imaging in biomedicine, Nat. Photon. 12 (2018), 578-589. https://doi.org/10.1038/s41566-018-0253-x
  11. R. Barer, Determination of Dry Mass, Thickness, Solid and Water Concentration in Living Cells, Nature 172 (1953), no. 4389, 1097-1098. https://doi.org/10.1038/1721097a0
  12. G. Popescu et al., Optical imaging of cell mass and growth dynamics, Am. J. Physiol. Cell Physiol. 295 (2008), no. 2, 345-348.
  13. K. Kim et al., Optical diffraction tomography techniques for the study of cell pathophysiology, J. Biomed. Photon. Eng. 2 (2016), no. 2, 020201.
  14. O. Haeberle et al., Tomographic diffractive microscopy: Basics, techniques and perspectives, J. Modern Opt. 57 (2010), no. 9, 686-699. https://doi.org/10.1080/09500340.2010.493622
  15. C. J. R. Sheppard and S. S. Kou, 3d imaging with holographic tomography, AIP Conf. Proc. 1236 (2010), no. 1, 65-69.
  16. J. W. Lim et al., Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography, Opt. Express 23 (2015), no. 13, 16933. https://doi.org/10.1364/OE.23.016933
  17. Y. Sung and R. R. Dasari, Deterministic regularization of threedimensional optical diffraction tomography, JOSA A 28 (2011), no. 8, 1554-1561. https://doi.org/10.1364/JOSAA.28.001554
  18. Y. Cotte et al., Marker-free phase nanoscopy, Nat. Photon. 7 (2013), 113-117. https://doi.org/10.1038/nphoton.2012.329
  19. H.-Y. Liu et al., SEAGLE: Sparsity-Driven Image Reconstruction Under Multiple Scattering, IEEE Trans. Comput. Imag. 4 (2018), no. 1, 73-86. https://doi.org/10.1109/TCI.2017.2764461
  20. Z. Wang et al., Spatial light interference tomography (SLIT), Opt. Express 19 (2011), no. 21, 19907. https://doi.org/10.1364/OE.19.019907
  21. P. Hosseini et al., Scanning color optical tomography (scot), Opt. Express 23 (2015), no. 15, 19752-19762. https://doi.org/10.1364/OE.23.019752
  22. Y. Bao and T. K. Gaylord, Quantitative phase imaging method based on an analytical nonparaxial partially coherent phase optical transfer function, J. Opt. Soc. Am. A 33 (2016), no. 11, 2125. https://doi.org/10.1364/JOSAA.33.002125
  23. M. Chen, L. Tian, and L. Waller, 3D differential phase contrast microscopy, Biomed. Opt. Express 7 (2016), no. 10, 3940-3950. https://doi.org/10.1364/BOE.7.003940
  24. J. M. Soto, J. A. Rodrigo, and T. Alieva, Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy [Invited], Appl. Opt. 57 (2018), no. 1, A205. https://doi.org/10.1364/AO.57.00A205
  25. B. Vinoth et al., Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution , Scienti. Rep. 8 (2018), no. 1, 5943. https://doi.org/10.1038/s41598-018-24408-w
  26. Nanolive Cell Explorer hardware description, http://nanolive.ch/hardware, 2018, Accessed: 2018-09-01.
  27. Tomocube hardware description, http://www.tomocube.com/product/technology/, 2018, Accessed: 2018-09-01.
  28. A. Kus, Illumination-related errors in limited-angle optical diffraction tomography, Appl. Opt. 56(2017), no. 33, 9247-9256. https://doi.org/10.1364/AO.56.009247
  29. W. Krauze et al., Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography, Opt. Express 24 (2016), no. 5, 4924-4936. https://doi.org/10.1364/OE.24.004924
  30. W. Krauze et al., Reconstruction method for extended depth-offield optical diffraction tomography, Methods 136 (2018), no. 1 March 2018, 40-49. https://doi.org/10.1016/j.ymeth.2017.10.005
  31. A. Kus, P. L. Makowski, and M. Kujawinska, Advances in design and testing of limited angle optical diffraction tomography system for biological applications, Proc. SPIE 9718 (2016), 1-9.
  32. J. Kostencka et al., Accurate approach to capillary-supported optical diffraction tomography, Opt. Express 23 (2015), no. 6, 7908-7923. https://doi.org/10.1364/OE.23.007908
  33. E. Wolf, Three-dimensional structure determination of semitransparent objects from holographic data, Opt. Commun. 1 (1969), no. 4, 153-156. https://doi.org/10.1016/0030-4018(69)90052-2
  34. W. Krauze, Method for the numerical analysis of phase biological microsamples in limited-angle optical tomography, Ph.D. thesis, Warsaw University of Technology, 2018.
  35. A. C. Kak and M. Slaney, Principles of computerized tomographic imaging, SIAM, 2001.
  36. V. Lauer, New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope, J. Microsc. 205 (2002), no. 2, 165-176. https://doi.org/10.1046/j.0022-2720.2001.00980.x
  37. Y. Sung et al., Optical diffraction tomography for high resolution live cell imaging, Opt. Express 17 (2009), no. 1, 266-277. https://doi.org/10.1364/OE.17.000266
  38. B. Simon et al., Tomographic diffractive microscopy with isotropic resolution, Optica 4 (2017), no. 4, 460-463. https://doi.org/10.1364/OPTICA.4.000460
  39. F. Merola et al., Tomographic flow cytometry by digital holography, Light Sci. Appl. 6 (2017), 1-7.
  40. T. M. Habashy, R. W. Groom, and B. R. Spies, Beyond the born and rytov approximations: A nonlinear approach to electromagnetic scattering, J. Geophys. Res. 98 (1993), no. B2, 1759-1775. https://doi.org/10.1029/92JB02324
  41. S. O. Isikman et al., Lens-free optical tomographic microscope with a large imaging volume on a chip, Proc. Natl. Acad. Sci. USA 108 (2011), no. 18, 7296-301. https://doi.org/10.1073/pnas.1015638108
  42. Y. Sung et al., Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy, PloS ONE 7 (2012), no. 11, e49502. https://doi.org/10.1371/journal.pone.0049502
  43. W. Choi et al., Tomographic phase microscopy, Nat. Methods 4 (2007), no. 9, 717-719. https://doi.org/10.1038/nmeth.1489
  44. K. Kim et al., Diffraction optical tomography using a quantitative phase imaging unit, Opt. Lett. 39 (2014), no. 24, 6935-6938. https://doi.org/10.1364/OL.39.006935
  45. Y. Kim et al., Profiling individual human red blood cells using common-path diffraction optical tomography, Scienti. Rep. 4 (2014), 6659. https://doi.org/10.1038/srep06659
  46. G. Popescu et al., Diffraction phase microscopy for quantifying cell structure and dynamics, Opt. Lett. 31 (2006), no. 6, 775-777. https://doi.org/10.1364/OL.31.000775
  47. K. Kim et al., High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography, J. Biomed. Opt. 19 (2014), no. 1, 011005. https://doi.org/10.1117/1.JBO.19.1.011005
  48. W. Krauze, A. Kus, and M. Kujawinska, Limited-angle hybrid optical diffraction tomography system with total-variation-minimization-based reconstruction, Opt. Eng. 54 (2015), 054104. https://doi.org/10.1117/1.OE.54.5.054104
  49. J. Kostencka et al., Holographic tomography with scanning of illumination: Space-domain reconstruction for spatially invariant accuracy, Biomed. Opt. Express 7 (2016), no. 10, 4086-4100. https://doi.org/10.1364/BOE.7.004086
  50. S. Kawata et al., Laser computed-tomography microscope, Appl. Opt. 29 (1990), no. 26, 3805-3809. https://doi.org/10.1364/AO.29.003805
  51. S. Shin et al., Optical diffraction tomography using a digital micromirror device for stable measurements of 4-D refractive index tomography of cells, Proc. SPIE Int. Soc. Opt. Eng. 9718 (2016), no. 971814, 1-8.
  52. A. Kus, W. Krauze, and M. Kujawinska, Active limited-angle tomographic phase microscope, J. Biomed. Opt. 20 (2015), no. 11, 111216. https://doi.org/10.1117/1.JBO.20.11.111216
  53. S. Shin et al., Active illumination using a digital micromirror device for quantitative phase imaging, Opt. Lett. 40 (2015), no. 22, 1-5. https://doi.org/10.1364/OL.40.000001
  54. K. R. Lee et al., Time-multiplexed structured illumination using a DMD for optical diffraction tomography, Opt. Lett. 42 (2017), no. 5, 999-1002. https://doi.org/10.1364/OL.42.000999
  55. A. Kus, W. Krauze, and M. Kujawinska, Focus-tunable lens in limited-angle holographic tomography, Proc. SPIE 10070 (2017), 1-9.
  56. S. J. LaRoque, E. Y. Sidky, and X. Pan, Accurate image reconstruction from few-view and limited-angle data in diffraction tomography, JOSA A 25 (2008), no. 7, 1772-1782. https://doi.org/10.1364/JOSAA.25.001772
  57. A. Pryor et al., GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3d imaging, Scienti. Rep. 7 (2017), no. 1, 1-12. https://doi.org/10.1038/s41598-016-0028-x
  58. P. L. Makowski, Redundant Haar wavelet regularization in sparse-view optical diffraction tomography of microbiological structures, Speckle 2018: VII International Conference on Speckle Metrology, vol. 10834, International Society for Optics and Photonics, Sept. 2018, p. 108341U.
  59. A. Kus et al., Limited-angle hybrid diffraction tomography for biological samples, Proc. SPIE 9132 (2014), 91320O.
  60. E. Y. Sidky, C.-M. Kao, and X. Pan, Accurate image reconstruction from few-views and limited-angle data in divergent-beam ct, J. X-ray Sci. Technol. 14 (2006), no. 2, 119-139.
  61. X. Jin et al., Anisotropic total variation for limited-angle ct reconstruction, Nuclear Science Symposium Conference Record (NSS/MIC), 2010 IEEE, IEEE, 2010, pp. 2232-2238.
  62. A. Kus, W. Krauze, and M. Kujawinska, Limited-angle, holographic tomography with optically controlled projection generation, Proc. SPIE 9330 (2015), 933007.
  63. E. Y. Sidky, J. H. Jorgensen, and X. Pan, Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm, Phys. Med. Biol. 57(2012), no. 10, 3065. https://doi.org/10.1088/0031-9155/57/10/3065
  64. A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imag. Vis. 40 (2011), no. 1, 120-145. https://doi.org/10.1007/s10851-010-0251-1
  65. W. Krauze and M. Kujawinska, Sinogram cleaning procedure for optical diffraction tomography, Proc. SPIE 10834 (2018), no. 108341Q, 1-5.
  66. Y. Bao and T. K. Gaylord, Iterative optimization in tomographic deconvolution phase microscopy, JOSAA35 (2018), no. 4, 652-660. https://doi.org/10.1364/JOSAA.35.000652
  67. E. Soubies, T.-A. Pham, and M. Unser, Efficient inversion of multiple-scattering model for optical diffraction tomography, Opt. Express 25 (2017), no. 18, 21786-21800. https://doi.org/10.1364/OE.25.021786
  68. C. Godavarthi et al., Superresolution with full-polarized tomographic diffractive microscopy, JOSAA 32 (2015), no. 2, 287-292. https://doi.org/10.1364/JOSAA.32.000287
  69. H. Spielmann et al., The international EU/COLIPA in vitro phototoxicity validation study: results of Phase II (blind trial). Part 1: The 3T3 NRU phototoxicity test, Toxicol. In Vitro 12 (1998), no. 3, 305-327. https://doi.org/10.1016/S0887-2333(98)00006-X
  70. M. Takeda et al., Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry, J. Opt. Soc. Am. 72 (1982), no. 1, 156. https://doi.org/10.1364/JOSA.72.000156
  71. A. Limaye, Drishti: A volume exploration and presentation tool, Proc. SPIE 8506 (2018), 85060X.
  72. B. D. A. Levin et al., Tutorial on the visualization of volumetric data using tomviz, Microsc. Today 26 (2018), no. 1, 12-17. https://doi.org/10.1017/S1551929517001213

피인용 문헌

  1. 3D-printed biological cell phantom for testing 3D quantitative phase imaging systems vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-55330-4
  2. Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing vol.12, pp.3, 2020, https://doi.org/10.1364/aop.384612
  3. Iterative optical diffraction tomography for illumination scanning configuration vol.28, pp.26, 2019, https://doi.org/10.1364/oe.413230
  4. Fast multiple-scattering holographic tomography based on the wave propagation method vol.59, pp.5, 2019, https://doi.org/10.1364/ao.378907
  5. Optical diffraction tomography with finite object support for the minimization of missing cone artifacts vol.11, pp.4, 2019, https://doi.org/10.1364/boe.386507
  6. DryMass: handling and analyzing quantitative phase microscopy images of spherical, cell-sized objects vol.21, pp.1, 2019, https://doi.org/10.1186/s12859-020-03553-y
  7. Common-path intrinsically achromatic optical diffraction tomography vol.12, pp.7, 2021, https://doi.org/10.1364/boe.428828
  8. JPEG Pleno holography: scope and technology validation procedures vol.60, pp.3, 2019, https://doi.org/10.1364/ao.404305
  9. Rolling angle recovery of flowing cells in holographic tomography exploiting the phase similarity vol.60, pp.4, 2019, https://doi.org/10.1364/ao.404376
  10. The instrument transfer function for optical measurements of surface topography vol.3, pp.2, 2021, https://doi.org/10.1088/2515-7647/abe3da
  11. Bacteria Single-Cell and Photosensitizer Interaction Revealed by Quantitative Phase Imaging vol.22, pp.10, 2019, https://doi.org/10.3390/ijms22105068
  12. Quality guided alternative holographic data representation for high performance lossy compression vol.23, pp.7, 2019, https://doi.org/10.1088/2040-8986/ac0874
  13. Optimizing sample illumination scanning for reflection and 4Pi tomographic diffractive microscopy vol.60, pp.25, 2021, https://doi.org/10.1364/ao.435721
  14. Recording of Long Low-Amplitude Bulk Elastic Waves in Transparent Solid Waveguides by Digital and Classical Holography vol.12, pp.3, 2019, https://doi.org/10.3390/app12031687