닭진드기 효율적인 모니터링 방법 소개

최근 닭의 무거워지면서 닭진드기(Dermanyssus gallinae)에 의한 신선계계층의 화폐가 증가되고 있다. 닭진드기 방제를 위하여 종합방제관리(IPM: Integrated Pest Management)를 많이 활용하고 있으며, 그 과정은 닭진드기 유입 요인 차단, 모니터링, 방제법 적용, 효과 검증의 순으로 실시된다. 그중 닭진드기 모니터링은 닭진드기 오염도 평가를 통한 적절한 방제 시기를 결정 및 방제법의 효과 검증을 위하여 목 필요한 과정이다. 따라서 이번 호에서는 신선계계층에서 효율적으로 닭진드기 오염도를 모니터링할 수 있는 방법을 소개하고자 한다.

1. 국내에서 주로 이용되는 닭진드기 모니터링 방법별 비교・분석

국내 개계계층에서 주로 사용되고 있는 닭진드기 모니터링 방법에는 육안평가법, 먼지관찰법, 골판지법, 테이프법 등이 있다. 육안평가법은 사람이 계사 내부를 직접 관찰하여 닭진드기 오염 수준을 판단하는 방법(Cox 등, 2009)으로 닭진드기 오염 수준에 따라 0~IV의 5단계로 구분되어진다(표 1 참조).

또한 먼지관찰법, 골판지법, 테이프법은 닭진드기를 채집하여 표 2의 기준과 같이 닭진드기 오염 수준을 파악하는 것이다.

국내 신선계계층 4개소를 대상으로 위에 기술된 4가지 모니터링
표 1. 육안평가법을 통한 계서 내 닭진드기 오염 수준 판단 기준

<table>
<thead>
<tr>
<th>오염 수준</th>
<th>판정 기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>닭진드기 발견 불가</td>
</tr>
<tr>
<td>I</td>
<td>개체 단위로 계기 구조물 틈새에서만 발견</td>
</tr>
<tr>
<td>II</td>
<td>개체 단위로 계기에서 발견</td>
</tr>
<tr>
<td>III</td>
<td>군집 단위(10마리 이상)로 계기 구조물 틈새에서만 발견</td>
</tr>
<tr>
<td>IV</td>
<td>군집 단위(100마리 이상)로 계기 어디에서도 발견</td>
</tr>
</tbody>
</table>

* Cox 등, 2009, Red meat: monitoring method and treatment, in Book of Abstracts 8th European symposium on poultry welfare, Cervia, Italy, 18-22 May, p83

표 2. 닭진드기 모니터링법 별 계기 내 닭진드기 오염 수준 판단 기준

<table>
<thead>
<tr>
<th>구분</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>골판지법</td>
<td>없음</td>
<td>150마리 이하</td>
<td>151~500마리</td>
<td>501마리 이상</td>
</tr>
<tr>
<td>테이프법</td>
<td>없음</td>
<td>90마리 이하</td>
<td>10마리 이상</td>
<td>닭진드기 군집이름</td>
</tr>
<tr>
<td>먼지관찰법</td>
<td>없음</td>
<td>90마리 이하</td>
<td>10~100마리</td>
<td>10마리 이상</td>
</tr>
</tbody>
</table>

* a) 골판지법 : 국립축산과학원, 2018
c) 먼지관찰법 : 캐리지조직위원회, 2017, 외부기생충 방역 모범사례 조사 및 보급 방법 연구

법 별로 분석된 닭진드기 수 및 오염 수준을 비교한 결과는 표 3과 같다. 골판지법, 먼지관찰법 및 육안평가법을 통한 닭진드기 오염 수준은 실험 4개 농가 모두 유사한 수준을 보였다. 하지만 테이프법을 통한 닭진드기 오염 수준은 A 및 B 농가는 다른 모니터링법과 유사한 오염 수준을 보였으나, C 및 D 농가는 다른 모니터링법에 비교하여 낮은 오염도를 보였다. C 및 D 농가는 테이프를 설치한 케이지와이어에 닭진드기의 유입을 억제하는 실리카를 최근 코팅하여 닭진드기의 오염도가 낮게 나타난 것으로 추정된다. 따라서 실리카를 코팅한 농가에 대한 닭진드기 모니터링 및 테이프법한 가지 모니터링으로는 정확한 오염 수준을 측정하기 곤란 하므로 추가로 한, 두 가지 방법을 혼용하여 사용하는 것이 바람직한 것으로 판단된다.

2. 닭진드기 모니터링법별 장점 및 단점 비교

표 3. 닭진드기 모니터링법 별 포함된 닭진드기 수 및 오염 수준 비교

<table>
<thead>
<tr>
<th>구분</th>
<th>골판지법 (평균오염수준)</th>
<th>테이프법 (평균오염수준)</th>
<th>먼지관찰법</th>
<th>육안평가법</th>
</tr>
</thead>
<tbody>
<tr>
<td>닭진드기수 오염수준</td>
<td>닭진드기수 오염수준</td>
<td>닭진드기수 오염수준</td>
<td>닭진드기수 오염수준</td>
<td>닭진드기수 오염수준</td>
</tr>
<tr>
<td>A농가</td>
<td>13.6±11.7</td>
<td>II</td>
<td>8.7±5.6</td>
<td>II</td>
</tr>
<tr>
<td>B농가</td>
<td>755.0±698.4</td>
<td>IV</td>
<td>군집이름</td>
<td>IV</td>
</tr>
<tr>
<td>C농가</td>
<td>4,640.3±320.6</td>
<td>IV</td>
<td>0.6±0.9</td>
<td>II</td>
</tr>
<tr>
<td>D농가</td>
<td>2,484.7±3076.0</td>
<td>IV</td>
<td>1.0±1.2</td>
<td>II</td>
</tr>
</tbody>
</table>
객관적으로 측정 가능한 장점이 있으나 2회 이상 농장 방문 및 트랩 설치 등의 적용이 어려운 단점이 있다. 또한 테이프법은 살아있 는 닭진드기 제거이 불가능하여 향후 구체적 내성 실험에 활용이 어려운 단점이 있다. 면지관찰법은 적용 방법이 용이하고, 1회 농장 방문으로 오염도 측정이 가능하며 조기에 오염을 점검할 수 있으나, 객관적인 닭진드기 오염 수준을 파악하기 어려운 단점이 있다. 육안평가법은 적용이 용이하고, 1회 농장 방문으로 오염 수준 파악이 가능한 장점이 있으나 관찰자의 주관적인 판단으로 오염도를 평가하여 정확성이 부족하고, 또한 아주 적은 수의 닭진드기 오염 시 닭진드기를 발견하기 어려운 단점이 있다.

3. 맺음말

지금까지 살펴본 바와 같이, 닭진드기 모니터링 시 농장의 환경, 과거 적용한 방제법 등을 고려하여 효율적 인 모니터링법을 선택 하여야 하며, 최소한 객관성이 높은 골판지법 또는 테이프법을 활용한 모니터링법을 포 함한 2가지 이상의 방 법을 동시에 사용하여 비교·분석하는 것이 바람직한 것으로 판단 된다. 아울러 적용한 방제법의 효과 검증을 위하여 주관적인 육안 평가법만을 사용하기 보다는 객관성이 높은 골판지법 또는 테이프법을 활용할 필요성이 높다.

<table>
<thead>
<tr>
<th>구분</th>
<th>장점</th>
<th>단점</th>
</tr>
</thead>
<tbody>
<tr>
<td>골판지법</td>
<td>객관적인 닭진드기 오염도 확인, 내성 검사 등 향후 실험에 활용도 높음</td>
<td>적용 방법 어려움, 2회 이상 농장 방문</td>
</tr>
<tr>
<td>테이프법</td>
<td>객관적인 닭진드기 오염도 확인</td>
<td>적용 방법 어려움, 내성 검사 등 향후 실험에 활용 불가, 2회 이상 농장 방문</td>
</tr>
<tr>
<td>면지관찰법</td>
<td>적용 방법 용이, 1회 농장 방문으로 가능, 조기 검출 가능</td>
<td>객관적인 닭진드기 오염도 확인, 관찰자 주관적인 판단, 아주 적은 수 닭진드기 감염 시 발견 불가</td>
</tr>
<tr>
<td>육안평가법</td>
<td>적용 방법 용이, 1회 농장 방문으로 가능</td>
<td>관찰자 주관적인 판단, 아주 적은 수 닭진드기 감염 시 발견 불가</td>
</tr>
</tbody>
</table>