DOI QR코드

DOI QR Code

Temporal and spatial outlier detection in wireless sensor networks

  • Nguyen, Hoc Thai (Department of Automation, Vietnam National University of Agriculture) ;
  • Thai, Nguyen Huu (Faculty of Electrical Engineering, Vinh University of Technology Education)
  • Received : 2018.06.17
  • Accepted : 2019.02.13
  • Published : 2019.08.02

Abstract

Outlier detection techniques play an important role in enhancing the reliability of data communication in wireless sensor networks (WSNs). Considering the importance of outlier detection in WSNs, many outlier detection techniques have been proposed. Unfortunately, most of these techniques still have some potential limitations, that is, (a) high rate of false positives, (b) high time complexity, and (c) failure to detect outliers online. Moreover, these approaches mainly focus on either temporal outliers or spatial outliers. Therefore, this paper aims to introduce novel algorithms that successfully detect both temporal outliers and spatial outliers. Our contributions are twofold: (i) modifying the Hampel Identifier (HI) algorithm to achieve high accuracy identification rate in temporal outlier detection, (ii) combining the Gaussian process (GP) model and graph-based outlier detection technique to improve the performance of the algorithm in spatial outlier detection. The results demonstrate that our techniques outperform the state-of-the-art methods in terms of accuracy and work well with various data types.

Keywords

References

  1. G. Treplan, L. Tran‐Thanh, and J. Levendovszky, Energy efficient reliable cooperative multipath routing in wireless sensor networks, World Acad. Sci. Eng. Technol. 68 (2010), 1366-1371.
  2. J. Levendovszky et al., Fading‐aware reliable and energy efficient routing in wireless sensor networks, Comput. Commun. 33 (2010), S102-S109. https://doi.org/10.1016/j.comcom.2010.07.005
  3. M. Carlos‐Mancilla, E. Lopez‐Mellado, and M. Siller, Wireless sensor networks formation: approaches and techniques, J. Sensors 2016 (2016), 1-18.
  4. A. Saifullah et al., Enabling reliable, asynchronous, and bidirectional communication in sensor networks over white spaces, in Proc. ACM Conf. Embedded Netw. Sens. Syst., Delft, Netherlands, Nov. 2017, pp. 9:1-14.
  5. H. Jawad et al., Energy‐efficient wireless sensor networks for precision agriculture: a review, Sensors 17 (2017), no. 8, 1781:1-45.
  6. W. Li et al., Defective sensor identification for wsns involving generic local outlier detection tests, IEEE Trans. Signal Inf. Process. Netw. 2 (2016), no. 1, 29-48. https://doi.org/10.1109/TSIPN.2016.2516821
  7. Z. Feng et al., A new approach of anomaly detection in wireless sensor networks using support vector data description, Int. J. Distrib. Sens. Netw. 13 (2017), no. 1, 155014771668616.
  8. A. De Paola et al., Adaptive distributed outlier detection for wsns, IEEE Trans. Cybern. 45 (2015), no. 5, 902-913. https://doi.org/10.1109/TCYB.2014.2338611
  9. L. Marti et al., Anomaly detection based on sensor data in petroleum industry applications, Sensors 15 (2015), no. 2, 2774-2797. https://doi.org/10.3390/s150202774
  10. X. Liu et al., Fault tolerant complex event detection in wsns: a case study in structural health monitoring, IEEE Trans. Mob. Comput. 14 (2015), no. 12, 2502-2515. https://doi.org/10.1109/TMC.2015.2405544
  11. K. Singh and S. Upadhyaya, Outlier detection: applications and techniques, Int. J. Comp. Sci. Issue (IJCSI) 9 (2012), no. 1, 307.
  12. C. O'Reilly et al., Anomaly detection in wireless sensor networks in a non‐stationary environment, IEEE Commun. Surveys Tutorials 16 (2014), no. 3, 1413-1432. https://doi.org/10.1109/SURV.2013.112813.00168
  13. H. Aguinis, W. F. Cascio, and R. S. Ramani, Science's reproducibility and replicability crisis: International business is not immune, J. Int. Bus. Stud. 48 (2017), 653-663. https://doi.org/10.1057/s41267-017-0081-0
  14. A. Abid, A. Kachouri, and A. Mahfoudhi, Outlier detection for wireless sensor networks using density‐based clustering approach, IET Wirel. Sensor Syst. 7 (2017), no. 4, 83-90. https://doi.org/10.1049/iet-wss.2016.0044
  15. F. R. Hampel, A general qualitative definition of robustness, Ann. Math. Stat. 42 (1971), 1887-1896. https://doi.org/10.1214/aoms/1177693054
  16. H. Liu, S. Shah, and W. Jiang, On‐line outlier detection and data cleaning, Comput. Chem. Eng. 28 (2004), no. 9, 1635-1647. https://doi.org/10.1016/j.compchemeng.2004.01.009
  17. H. H. W. J. Bosman et al., Spatial anomaly detection in sensor networks using neighborhood information, Inf. Fusion 33 (2017), 41-56. https://doi.org/10.1016/j.inffus.2016.04.007
  18. R. K. Pearson, Outliers in process modeling and identification, IEEE Trans. Control Syst. Technol. 10 (2002), no. 1, 55-63. https://doi.org/10.1109/87.974338
  19. G. Zheng et al., Contextual spatial outlier detection with metric learning, in Proc. ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining, Halifax, Canada, Aug. 2017, pp. 2161-2170.
  20. I. Ben‐Gal, Outlier detection, Data mining and knowledge discovery handbook, Springer, New York, USA, 2005, pp. 131-146.
  21. A. M. Said, P. D. D. Dominic, and I. Faye, Data stream outlier detection approach based on frequent pattern mining technique, Int. J. Bus. Inf. Syst. 20 (2015), no. 1, 55-70. https://doi.org/10.1504/IJBIS.2015.070892
  22. M. S. Uddin et al., Online bad data detection using kernel density estimation, in IEEE Power Energy Soc. General Meeting, Denver, CO, USA, July 2015, pp. 1-5.
  23. M. Solaimani et al., Statistical technique for online anomaly detection using spark over heterogeneous data from multi‐source vmware performance data, in IEEE Int. Conf. Big Data (Big Data), Washington, DC, USA, Oct. 2014, pp. 1086-1094.
  24. C. C. Aggarwal and P. S. Yu, Outlier detection for high dimensional data, ACM SIGMOD Record 30 (2001), 37-46. https://doi.org/10.1145/376284.375668
  25. M. M. Breunig et al., Lof: identifying density‐based local outliers, ACM SIGMOD Record 29 (2000), 93-104. https://doi.org/10.1145/335191.335388
  26. E. M. Knox and R. T. Ng, Algorithms for mining distancebased outliers in large datasets, in Proc. Int. Conf. Very Large Data Bases, New York, USA, 1998, pp. 392-403.
  27. L. Tran, L. Fan, and C. Shahabi, Distance‐based outlier detection in data streams, Proc. VLDB Endowment 9 (2016), no. 12, 1089-1100. https://doi.org/10.14778/2994509.2994526
  28. A. Christy, G. Meera Gandhi, and S. Vaithyasubramanian, Cluster based outlier detection algorithm for healthcare data, Procedia Comput. Sci. 50 (2015), 209-215. https://doi.org/10.1016/j.procs.2015.04.058
  29. S. Ramaswamy, R. Rastogi, and K. Shim, Efficient algorithms for mining outliers from large data sets, ACM SIGMOD Record 29 (2000), no. 2, 427-438. https://doi.org/10.1145/335191.335437
  30. H.‐P. Kriegel et al., Angle‐based outlier detection in high‐dimensional data, in Proc. ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining, Las Vegas, NV, USA, Aug. 2008, pp. 444-452.
  31. J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques, 3rd ed., Morgan Kaufmann, Elsevier, Waltham, MA, 2011.
  32. X. Li, J. Lv, and Z. Yi, An efficient representation‐based method for boundary point and outlier detection, IEEE Trans. Neural Netw. Learn. Syst. 29 (2018), no. 1, 51-62. https://doi.org/10.1109/TNNLS.2016.2614896
  33. W. Ruan et al., Tagfall: Towards unobstructive fine‐grained fall detection based on uhf passive rfid tags, in Proc. EAI Int. Conf. Mobile Ubiquitous Syst.: Comput., Netw. Services, Coimbra, Portugal, July 2015, pp. 140-149.
  34. T. Fawcett, An introduction to roc analysis, Pattern Recogn. Lett. 27 (2006), no. 8, 861-874. https://doi.org/10.1016/j.patrec.2005.10.010
  35. S. Haque, M. Rahman, and S. Aziz, Sensor anomaly detection in wireless sensor networks for healthcare, Sensors 15 (2015), no. 4, 8764-8786. https://doi.org/10.3390/s150408764
  36. B. Krishnamachari and S. Iyengar, Distributed bayesian algorithms for fault‐tolerant event region detection in wireless sensor networks, IEEE Trans. Comput. 53 (2004), no. 3, 241-250. https://doi.org/10.1109/TC.2004.1261832
  37. W. Weili et al., Localized outlying and boundary data detection in sensor networks, IEEE Trans. Knowl. Data Eng. 19 (2007), no. 8, 1145-1157. https://doi.org/10.1109/TKDE.2007.1067
  38. H. T. Nguyen et al., Efficient approach for maximizing lifespan in wireless sensor networks by using mobile sinks, ETRI J. 39 (2017), no. 3, 353-363. https://doi.org/10.4218/etrij.17.0116.0629
  39. R. K. Pearson, Mining imperfect data: dealing with contamination and incomplete records, vol. 93, SIAM, Philadelphia, PA, USA, 2005.
  40. E. Lengyel, Mathematics for 3D game programming and computer graphics, Cengage Learning, Boston, MA, USA, 2012.
  41. H. T. Nguyen and L. Janos, Position location technique in non‐line‐of‐sight environments for wireless sensor networks, J. Comput. Sci. Cybern. 32 (2016), no. 2, 93-111.
  42. C. E. Rasmussen, Gaussian processes in machine learning, Summer School on Machine Learning, Springer, 2003, pp. 63-71.
  43. M. Kemmler et al., One‐class classification with Gaussian processes, Pattern Recogn. 46 (2013), no. 12, 3507-3518. https://doi.org/10.1016/j.patcog.2013.06.005
  44. R. Ramirez‐Padron, B. Mederos, and A. J. Gonzalez, Novelty detection using sparse online gaussian processes for visual object recognition, in Int. FLAIRS Conf., St. Pete Beach, FL, USA, May 2013, pp. 124-129.
  45. M. Smith et al., Maritime abnormality detection using Gaussian processes, Knowl. Inf. Syst. 38 (2014), no. 3, 717-741. https://doi.org/10.1007/s10115-013-0685-z
  46. J. Neyman and E. S. Pearson, On the problem of the most efficient tests of statistical hypotheses, Philos. Trans. R. Soc. London. Series A 231 (1933), 289-337. https://doi.org/10.1098/rsta.1933.0009
  47. L. Davies and U. Gather, The identification of multiple outliers, J. Am. Stat. Assoc. 88 (1993), no. 423, 782-792. https://doi.org/10.1080/01621459.1993.10476339
  48. J. Lopez and M. J. Lopez,Package 'tsoutliers' (2017).
  49. L. Grossi and M. Riani, Robust time series analysis through the forward search, Compstat, Springer, 2002, pp. 521-526.
  50. R. K. Pearson et al., Generalized hampel filters, EURASIP J. Adv. Signal Proc. 2016 (2016), no. 1, 87:1-18.
  51. M. M. Smadi and F. S. Mjalli, Forecasting air temperatures using time series models and neural‐based algorithms, J. Math. Stat. 3 (2007), 44-48. https://doi.org/10.3844/jmssp.2007.44.48
  52. C. Guestrin et al., Intel lab data, J. Math. Stat. (2016), http://db.lcs.mit.edu/labdata/labdata.html.
  53. T. Zhang et al., Bayesian‐optimization‐based peak searching algorithm for clustering in wireless sensor networks, J. Sensor Actuator Netw. 7 (2018), no. 1, 2:1-19. https://doi.org/10.3390/jsan7020021
  54. S. Siripanadorn et al., Anomaly detection using self‐organizing map and wavelets in wireless sensor networks, in Proc. WSEAS Int. Conf. Appl. Comput. Sci., Japan, Oct. 2010, pp. 291-297.