DOI QR코드

DOI QR Code

Evaluation for Interactive Toxic Effects of Binary Heavy Metals on Bacterial Growth and Phosphorus Removal under Co-Culture Condition of Alcaligenes sp. and Pseudomonas sp.

Alcaligenes sp.와 Pseudomonas sp.의 공동배양 조건에서 박테리아 생장 및 인 제거에 미치는 두 종 중금속의 상호적인 독성효과 평가

  • Kim, Deok-Hyun (National Institute of Environmental Research) ;
  • Park, Sang-Wook (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Kim, Deok-Won (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Park, Ji-Su (EHS Part, Doosan Corporation Electro-Materials) ;
  • Oh, Eun-Ji (Water and Land Research Group/Division for Natural Environment, Korea Environment Institute) ;
  • Yoo, Jin (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Chung, Keun-Yook (Department of Environmental and Biological Chemistry, Chungbuk National University)
  • 김덕현 (국립환경과학원 토양지하수연구과) ;
  • 박상욱 (충북대학교 환경생명화학과) ;
  • 김덕원 (충북대학교 환경생명화학과) ;
  • 박지수 (두산전자 EHS팀) ;
  • 오은지 (한국환경정책평가연구원 자연환경연구실) ;
  • 유진 (충북대학교 환경생명화학과) ;
  • 정근욱 (충북대학교 환경생명화학과)
  • Received : 2020.09.01
  • Accepted : 2020.10.15
  • Published : 2020.12.10

Abstract

This study was initiated to quantitatively evaluate the inhibitory effects of five heavy metals (Cd, Cu, Zn, Pb, Ni) on bacterial growth and phosphorus removal in the binary culture of Alcaligenes sp. plus Pseudomonas sp. IC50 values of Alcaligenes sp. plus Pseudomonas sp. for Cd, Cu, Zn, Pb, and Ni were 0.75, 10.93, 7.08, 13.30, and 15.78 mg/L, respectively. For the binary treatments of heavy metals, IC50 was the lowest in the treatment of Cd + Cu, whereas, it was the highest in the Ni + Pb treatment. The EC50 values for Cd, Cu, Zn, Pb, and Ni were 0.54, 11.08, 6.14, 9.33, and 13.81 mg/L, respectively. For the binary treatments of heavy metals, EC50 was the lowest in the Cd + Zn, whereas, the highest in the Zn + Ni. Based on both IC50 and EC50 values for the binary culture of bacteria with the binary mixtures of heavy metals, the most interactive effect was found to be antagonistic, though the only synergistic effect was found in Cu + Ni treatment. Therefore, our results can provide basic data on the toxic effects of heavy metals on the bacterial growth and phosphorus removal in the wastewater treatment process.

본 연구는 Alcaligenes sp.와 Pseudomonas sp. 균주를 2종 혼합 배양 시, 혼합균주의 생장 및 인 제거에 5종의 중금속(Cd, Cu, Zn, Pb, Ni)이 미치는 저해효과를 정량적으로 평가하고자 수행되었다. 단일 중금속 처리 시 중금속별 Alcaligenes sp.와 Pseudomonas sp. 균주의 IC50는 Cd 0.75 mg/L, Cu 10.93 mg/L, Zn 7.08 mg/L, Pb 13.3 mg/L, Ni 15.78 mg/L 인 것으로 나타났다. 중금속 2종 처리 시 IC50는 Cd + Cu 처리구에서 가장 낮은 농도를 보였고, Ni + Pb 처리구에서 가장 높은 농도를 보였다. 단일 중금속 처리 시 중금속별 EC50 값은 Cd 0.54 mg/L, Cu 11.08 mg/L, Zn 6.14 mg/L, Pb 9.33 mg/L 및 Ni 13.81 mg/L이었다. 2종의 중금속 혼합 처리구별 EC50은 Cd + Zn 처리구에서 가장 낮은 농도, Zn + Ni 처리구에서 가장 높은 농도를 보였다. 2종 혼합 균주에 대한 2종 중금속 처리 결과 도출된 IC50 및 EC50 값을 기반 중금속 별 상호작용 평가 결과, 대부분 길항작용을 보이는 것으로 나타났으나, Cu + Ni 처리구에서는 상승작용을 보이는 것이 확인되었다. 따라서 본 연구 결과는 미생물을 이용한 오폐수 정화 처리 시 미생물의 성장 및 인 제거에 미치는 중금속의 독성으로 인한 저해효과에 대한 기초 자료를 제공할 수 있을 것으로 판단된다.

Keywords

References

  1. C. P. L. Grady Jr, C. L. Henry, and G. T. Daigger, Biological Wastewater Treatment, 2nd Ed., 104-107, Marcel Dekker, USA (1999).
  2. R. W. Herschy, Ecological threat to lakes and reservoirs, Encyclopedia of Lakes and Reservoirs, 233-234, Springer Netherlands, Dordrecht (2012).
  3. A. Oehmen, P. C. Lemos, G. Carvalho, Z. Yuan, J. Keller, L. L. Blackall, and M. A. Reis, Advances in enhanced biological phosphorus removal: From micro to macro scale, Water Res., 41(11), 2271-2300 (2007). https://doi.org/10.1016/j.watres.2007.02.030
  4. Y. Comeau, K. J. Hall, R. E. W. Hancock, and W. K. Oldham, Biochemical model for enhanced biological phosphorus removal, Water Res., 20, 1511-1521 (1986). https://doi.org/10.1016/0043-1354(86)90115-6
  5. A. Drizo, C. A. Frost, J. Grace, and K. A. Smith, Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems, Water Res., 33, 3595-3602 (1999). https://doi.org/10.1016/S0043-1354(99)00082-2
  6. R. I. Sedlak, Phosphorus and Nitrogen Removal from Municipal Wastewater, 2nd Ed., Lewis Publishers, USA (1991).
  7. M. Y. Yu, J. J. Park, and S. J. Hwang, Study on the possibility of biological phosphorus removal through anaerobic-aerobic method by Cyanobacteria synechococcus sp., J. Korea Soc. Waste Manag., 36(8), 731-736 (2018) https://doi.org/10.9786/kswm.2019.36.8.731
  8. M. F. R. Zuthi, W. S. Guo, H. H. Ngo, L. D. Nghiem, and F. I. Hai, Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes, Bioresour Technol., 139, 363-374 (2013). https://doi.org/10.1016/j.biortech.2013.04.038
  9. A. Khoshmanesh, B. T. Hart, A. Duncan, and R. Beckett, Luxury uptake of phosphorus by sediment bacteria, Water Res., 36, 774-778 (2002). https://doi.org/10.1016/S0043-1354(01)00272-X
  10. G. V. Levin and J. Sharpiro, Metabolic uptake of phosphorus by wastewater organics, Water Pollut. Control Fed., 37, 800-821 (1965).
  11. T. Mino, Y. Tsuzuki, and T. Matsuo, Effect of Phosphorus Accumulation on Acetate Metabolism in the Biological Phosphorus Removal Process, IAWPRC, United Kingdom, 27-38 (1987).
  12. T. Mino, M. C. M. Van Loosdrecht, and J. J. Heijnen, Microbiology and biochemistry of the enhanced biological phosphorus removal process, Water Res., 32, 3193-3207 (1998). https://doi.org/10.1016/S0043-1354(98)00129-8
  13. M. C. Wentzel, P. L. Dold, G. A. Ekama, and G. R. Marais, Enhanced polyphosphate organism cultures in activated sludge systems, Part III: Kinetic model, Water Sci. Technol., 15, 89-102 (1989).
  14. J. L. Barnard, Biological denitrification, Pollut. Control Fed., 72, 705-719 (1973).
  15. T. George, L. B. Franklin, and H. D. Stensel, Wastewater Engeineering : Treatment and Reuse, 4th Ed., McGraw-Hill, USA (2004).
  16. K. S. Kim, G. T. Seo, K. H. Lee, and N. J. kim, Comparison of biological phosphorus removal characteristics between A/O and A2/O process, J. Korean Soc. Water Environ., 18, 123-130 (2002).
  17. Y. Wang, J. Li, W. Jia, N. Wang, H. Wang, S. Zhang, and G. Chen, Enhanced nitrogen and phosphorus removal in the A2/O process by hydrolysis and acidification of primary sludge, Desalin. Water Treat., 52(25-27), 5144-5151 (2014). https://doi.org/10.1080/19443994.2014.926646
  18. Y. Chen, B. Li, L. Ye, and Y. Peng, The combined effects of COD/N ratio and nitrate recycling ratio on nitrogen and phosphorus removal in anaerobic/anoxic/aerobic (A2/O)-biological aerated filter (BAF) systems, Biochem. Eng. J., 93, 235-242 (2015). https://doi.org/10.1016/j.bej.2014.10.005
  19. P. Izadi, P. Izadi, and A. Eldyasti, Design, operation and technology configurations for enhanced biological phosphorus removal (EBPR) process: A review, Rev. Environ. Sci. Biotechnol., 19, 561-593 (2020). https://doi.org/10.1007/s11157-020-09538-w
  20. Y. S. Park, H. T. Park, and D. S. Kim, A study on the organic, nitrogen and phosphorus removal in (AO)2 SBR and A2O SBR, J. Environ. Health Sci., 13, 340-348 (2005).
  21. M. C. Jung, M. Y. Jung, and Y. W. Choi, Environmental assessment of heavy metals around abandoned metalliferous mine in Korea, Econ. Environ. Geol., 31, 23-33 (2004).
  22. M. J. K. Ahmed and M. Ahmaruzzaman, A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions, J. Water Process Eng., 10, 39-47 (2016). https://doi.org/10.1016/j.jwpe.2016.01.014
  23. S. D. Cunningham and D. W. Ow, Promises and prospects of phytoremediation, Plant Physiol., 110, 715-719 (1996). https://doi.org/10.1104/pp.110.3.715
  24. J. P. Vareda, A. J. Valente, and L. Duraes, Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review, J. Environ. Manage., 246, 101-118 (2019). https://doi.org/10.1016/j.jenvman.2019.05.126
  25. S. H. Park, S. I. Choi, J. B. Park, H. K. Han, S. D. Bae, I. J. Sung, and E. R. Park, Phytoremediation on the heavy metal contaminated soil by hyperaccumulators in the greenhouse, J. Soil Groundw. Environ., 16(5), 1-8 (2011). https://doi.org/10.7857/JSGE.2011.16.5.001
  26. J. W. Lee, H. M. Ryu, S. Heo, and U. K. Hwang, Toxicity assessment of heavy metals (As, Cr and Pb) using the rates of survival and population growth in marine rotifer, Brachionus Plicatilis, Korean J. Environ. Biol., 34, 193-200 (2016) https://doi.org/10.11626/KJEB.2016.34.3.193
  27. A. Hassen, N. Saidi, M. Cherif, and A. Boudabous, Resistance of environmental bacteria to heavy metals, Bioresour. Technol., 64, 7-15 (1998). https://doi.org/10.1016/S0960-8524(97)00161-2
  28. P. Prabhakaran, M. A. Ashraf, and W. S. Aqma, Microbial stress response to heavy metals in the environment, RSC Advances, 6 (111), 109862-109877 (2016). https://doi.org/10.1039/C6RA10966G
  29. A. Konopka and T. Zakharova, Quantification of bacterial lead resistance via activity assays, J. Microbiol. Methods, 37, 17-22 (1999). https://doi.org/10.1016/S0167-7012(99)00032-9
  30. E. I. Yilmaz, Metal tolerance and biorotption capacity of Bacillus Circulans strain EB1, Res. Microbiol., 154, 409-415 (2003). https://doi.org/10.1016/S0923-2508(03)00116-5
  31. Y. J. An, Y. M. Kim, T. I. Kwon, and S. W. Jeong, Combined effect of copper, cadmium, and lead upon Cucumis Sativus growth and bioaccumulation, Sci. Total Environ., 326, 85-93 (2004). https://doi.org/10.1016/j.scitotenv.2004.01.002
  32. A. Di Cesare, E. Eckert, and G. Corno, Co-selection of antibiotic and heavy metal resistance in freshwater bacteria, J. Limnol., 75, 59-66 (2016).
  33. I. C. Kong, Joint effects of heavy metal binary mixtures on seed germination, root and shoot growth, bacterial bioluminescence, and gene mutation, J. Environ. Sci., 25, 889-894 (2013). https://doi.org/10.1016/S1001-0742(12)60174-0
  34. X. Liu, S. Zhang, X. Shan, and P. Christie, Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination, Ecotox. Environ. Safe., 68, 305-313 (2007). https://doi.org/10.1016/j.ecoenv.2006.11.001
  35. X. Xu, Y. Li, Y. Wang, and Y. Wang, Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay, Toxicol. in Vitro, 25, 295-300 (2011).
  36. S. S. Lewis, P. L. Klerks, and P. L. Leberg, Relationship between allozyme genotype and sensitivity to stressors fin the western mosquitofish Gambusia Affinis detected for elevated temperature but not mercury, Aquat. Toxicol., 52. 205-216 (2001). https://doi.org/10.1016/S0166-445X(00)00151-X
  37. M. Mulvey, M. C. Newman, W. K. Vogelbein, M. A. Unger, and D. R. Ownby, Genetic structure and mtDNA diversity of Fundulus heteroclitus populations from polycyclic aromatic hydrocarbon-contaminated sites, Environ. Toxicol. Chem., 22, 671-677 (2003). https://doi.org/10.1002/etc.5620220328
  38. N. R. Philips and C. W. Hickey, Genotype-dependent recovery from acute exposure to heavy metal contamination in the fresh-water clam Sphaerium novaezelandiae, Aquatic Toxicol., 99, 507-513 (2010). https://doi.org/10.1016/j.aquatox.2010.07.004
  39. T. Horvat, Z. Vidakovic-Cifrek, V. Orescanin, M. Tkalec, and B. Pevalek-Kozlina, Toxicity assessment of heavy metal mixtures by Lemna minor L., Sci. Total Environ., 384, 229-238 (2007). https://doi.org/10.1016/j.scitotenv.2007.06.007
  40. A. A. Otitoloju, Evaluation of the joint-action toxicity of binary mixtures of heavy metals against the mangrove periwinkle Tympanotonus fuscatus var radula (L.), Ecotox. Environ. Safe., 53, 404-415 (2002). https://doi.org/10.1016/S0147-6513(02)00032-5
  41. N. Alia, K. Sardar, M. Said, K. Salma, A. Sadia, S. Sadaf, and S. Miklas. Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment, J. Environ. Res., 12 (7), 7400-7416 (2015).
  42. H. J. Kim, S. E. Lee, H. K. Hong, D. H. Kim, J. W. An, J. S. Choi, J. H. Nam, M. S. Lee, S. H. Woo, and K. Y. Chung, Phosphorus removal characteristics by bacteria isolated from industrial wastewater, Korean J. Environ. Agri., 31, 185-191 (2012). https://doi.org/10.5338/KJEA.2012.31.2.185
  43. H. J. Kim, R. B. Yoo, S. S. Han, S. H. Woo, M. S. Lee, K. T. Baek, and K. Y. Chung. Effect of the various heavy metals on the growth and phosphorus(P) removal capacity of the phosphorus accumulating microorganism (Pseudomonas sp.), Korean J. Environ. Agri., 29, 189-196 (2010). https://doi.org/10.5338/KJEA.2010.29.2.189
  44. R. B. Yoo, H. J. Kim, S. E. Lee, M. S. Lee, S. H. Woo, J. S. Choi, K. T. Baek, and K. Y. Chung, Effects of environmental factors and heavy metals on the growth and phosphorus removal of Alcaligenes sp., Korean J. Environ. Agri., 30, 216-222 (2011). https://doi.org/10.5338/KJEA.2011.30.2.216
  45. C. Zafiri, M. Kornaros, and G. Lyberatos, Kinetic modeling of biological phosphorus removal with a pure culture of Acinetobacter sp. under aerobic, anaerobic, and transient operating conditions, Water Res., 33, 2769-2788 (1999). https://doi.org/10.1016/S0043-1354(98)00522-3
  46. M. Asami, N. Suzuki, and J. Nakanishi, Aquatic toxicity emission from Tokyo: Wastewater measured using marine luminescent bacterium, Photobacterium Phosphoreum, Water Sci. Tech., 33, 121-128 (1996). https://doi.org/10.2166/wst.1996.0088
  47. C. Y. Chen, J. B. Huang, and S. D. Chen, Assessment of the microtox toxicity test and its application for industrial wastewater, Water Sci. Tech., 36, 375-382 (1997).
  48. J. H. Lange and K. W. Thomulka, Use of the Vibrio harveyi toxicity test for evaluating mixture interactions of nitrobenzene and dinitrobenzene, Ecotox. Environ. Safe., 38, 2-12 (1997). https://doi.org/10.1006/eesa.1997.1546
  49. S. Ding, J. Wu, M. Zhang, H. Lu, Q. Mahmood, and P. Zheng. Acute toxicity assessment of ANAMMOX substrates and anti-biotics by luminescent bacteria test, Chemosphere, 140, 174-183 (2015). https://doi.org/10.1016/j.chemosphere.2015.03.057
  50. K. J. Buhl and S. J. Hamilton, Hazard evaluation of inorganics, single and in mixtures, to Flannelmouth sucker (Catostomus latipinnis) in the San Juan river, New mexico, Ecotox. Environ. Safe., 38, 296-308 (1997). https://doi.org/10.1006/eesa.1997.1600
  51. S. Tao, T. Liang, J. Cao, R. W. Dawson, and C. Liu, Synergistic effect of copper and lead uptake by fish, Ecotox. Environ. Safe., 44, 190-195 (1999). https://doi.org/10.1006/eesa.1999.1822
  52. S. S. Sharma, H. Schat, R. Vooijs, and L. M. Van Heerwaarden, Combination toxicology of copper, zinc, and cadmium in binary mixtures: Concentration-dependent antagonistic, nonadditive, and synergistic effects on root growth in Silene vulgaris, Environ. Toxicol. Chem., 18, 348-355 (1999). https://doi.org/10.1002/etc.5620180235
  53. C. Shopsis, Antagonism of cadmium cytotoxicity by differentiation inducers, Cell Biol. Toxicol., 10, 191-205 (1994). https://doi.org/10.1007/BF00757562
  54. F. E. Alimohamadi, F. Separovic, C. J. Barrow, R. A. Cherny, F. Fraser, A. I. Bush, C. L. Masters, and K. J. Barnhan, Methionine regulates copper/hydrogen peroxide oxidation products of Aβ, J. Pept. Sci., 11, 353-360 (2005). https://doi.org/10.1002/psc.626
  55. V. W. W. Bao, K. M. Y. Leung, K. W. H. Kwok, A. Q. Zhang, and G. C. S. Lui, Synergistic toxic effects of zinc pyrithione and copper to three marine species: Implications on setting appropriate water quality criteria, Mar. Pollut. Bull., 57, 616-623 (2008). https://doi.org/10.1016/j.marpolbul.2008.03.041
  56. Z. Z. Zhang, Q. Q. Zhang, J. J. Xu, R. Deng, Z. Q. Ji, Y. H. Wu, and R. C. Jin, Evaluation of the inhibitory effects of heavy metals on anammox activity: A batch test study, Bioresour. Technol., 200, 208-216 (2016). https://doi.org/10.1016/j.biortech.2015.10.035