DOI QR코드

DOI QR Code

Development of Pd/TiO2 Catalysts with La2O3 Addition and Study on the Performance Improvement of H2 Oxidation at Room Temperature

La2O3가 첨가된 Pd/TiO2 촉매의 개발 및 H2 상온산화 반응에서의 성능 향상 연구

  • Lee, Dong Yoon (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Kim, Sung Chul (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Lee, Sang Moon (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 이동윤 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김성철 (경기대학교 환경에너지공학과) ;
  • 이상문 (경기대학교 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2020.10.19
  • Accepted : 2020.11.18
  • Published : 2020.12.10

Abstract

In this study, a Pd/TiO2 catalyst which oxidized H2 at room temperature without an additional energy source was prepared. And a specific surface area of TiO2 as a support was not proportional to H2 oxidation reaction performance of Pd/TiO2 catalyst. In addition La2O3 was added to Pd/TiO2 catalyst in order to evaluate the performance effect due to the change of catalysts physical properties. A Pd/La2O3-TiO2 was prepared by adding different amounts of La2O3 to TiO2 and CO chemisorption analysis was performed. Compared to the conversion rate (14% at 0.5% H2) of the Pd/TiO2(G) catalyst, the Pd/La2O3-TiO2 catalyst showed 74% which was improved by more than five times. It was found that the larger the metal dispersion of Pd as an active metal is, the more favorable to H2 oxidation reaction is. However, when the added La2O3 amount exceeded 10%, the catalyst performance decreased again. Finally, it was concluded that the physical properties of the Pd/La2O3-TiO2 catalyst have a dominant influence on the catalytic activity until 0.3~0.5% of injected H2 concentrations and the catalyst reaction rate was controlled by substance transfer from 1% or more concentrations of H2.

본 연구에서는 상온 조건에서 추가적인 에너지원 없이 H2 산화가 가능한 Pd/TiO2 촉매를 제조하였고, 지지체인 TiO2의 비표면적은 Pd/TiO2 촉매의 H2 산화 반응 성능과 비례하지는 않은 것을 확인하였다. 또한 촉매의 물성 변화에 의한 성능 영향 평가를 위하여 La2O3를 Pd/TiO2 촉매에 첨가하였다. La2O3를 TiO2에 함량별로 첨가하여 Pd/La2O3-TiO2를 제조하였고, CO chemisorption 분석을 진행하였다. Pd/TiO2(G) 촉매의 전환율(14% at 0.5% H2)과 비교하여 Pd/La2O3-TiO2 촉매가 74% 전환율로 5배 이상의 성능 증진이 나타났다. Pd/La2O3-TiO2 촉매는 활성금속인 Pd의 metal dispersion이 클수록 H2 산화반응에 유리한 것으로 분석되었다. 하지만 첨가되는 La2O3가 10%를 초과하게 되면 촉매 성능이 다시 감소하는 것을 알 수 있었다. 마지막으로 Pd/La2O3-TiO2 촉매의 물성이 지배적인 영향을 미치는 것은 주입되는 H2가 0.3~0.5% 농도 조건까지이며, 1% 이상의 H2 농도부터는 물질전달이 촉매 반응속도를 지배하는 것으로 판단된다.

Keywords

References

  1. I. Staffell, D. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah, and K. R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy Environ. Sci., 12, 463-491 (2019). https://doi.org/10.1039/C8EE01157E
  2. E. A. Reinecke, I. M. Tragsdorf, and K. Gierling, Studies on innovative hydrogen recombiners as safety devices in the containments of light water reactors, Nucl. Eng. Des., 230, 49-59 (2004). https://doi.org/10.1016/j.nucengdes.2003.10.009
  3. S. Kelm, L. Schoppe, J. Dornseiffer, D. Hofmann, E. A. Reinecke, F. Leistner, and S. Juhe, Ensuring the long-term functionality of passive auto-catalytic recombiners under operational containment atmosphere conditions-. An interdisciplinary investigation, Nucl. Eng. Des., 239, 274-280 (2009). https://doi.org/10.1016/j.nucengdes.2008.10.029
  4. S. J. Tauster, S. C. Fung, R. T. Baker, and J. A. Horsley, Strong interactions in supported-metal catalysts, Science, 211, 1121-1125 (1981). https://doi.org/10.1126/science.211.4487.1121
  5. L. F. Liotta, G. Deganello, P. Delichere, C. Leclercq, and G. A. Martin, Localization of alkali metal ions in sodium-promoted palladium catalysts as studied by low energy ion scattering and transmission electron microscopy, J. Catal., 164, 334-340 (1996). https://doi.org/10.1006/jcat.1996.0389
  6. I. Y. Ahn, W. J. Kim, and S. H. Moon, Performance of La2O3- or Nb2O5- added Pd/SiO2 catalysts in acctylene hydrogenation, Appl. Catal. A: Gen., 308, 75-81 (2006). https://doi.org/10.1016/j.apcata.2006.04.027
  7. T. H. Fleisch, R. F. Hicks, and A. T. Bell, An XPS study of metal-support interactions on Pd/SiO2 and Pd/La2O3, J. Catal., 87, 398-413 (1984). https://doi.org/10.1016/0021-9517(84)90200-8
  8. R. F. Hicks and A. T. Bell, Effects of metal-support interactions on the chemisorption of H2 and CO on Pd/SiO2 and Pd/La2O3, J. Catal., 89, 498-510 (1984). https://doi.org/10.1016/0021-9517(84)90326-9
  9. Y. S. Kang, S. S. Kim, G. J. Kim, and S. C. Hong, Pretreatment of Pd-supported catalysts for complete HCHO oxidation at room temperature, J. Chem. Eng. Jpn., 49, 460-465 (2016). https://doi.org/10.1252/jcej.14we387
  10. P. Panagiotopoulou and D. I. Kondarides, Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water-gas shift reaction, J. Catal., 225, 327-336 (2004). https://doi.org/10.1016/j.jcat.2004.04.030
  11. V. P. Santos, S. A. C. Carabineiro, P. B. Tavares, M. F. R. Pereira, J. J. M. Orfao, and J. L. Figueiredo, Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts, Appl. Catal. B: Environ., 99, 198-205 (2010). https://doi.org/10.1016/j.apcatb.2010.06.020
  12. S. A. Singh, K. Vishwanath, and G. Madras, Role of hydrogen and oxygen activation over Pt and Pd-doped composites for catalytic hydrogen combustion, ACS Appl. Mater. Interfaces, 9, 19380-19388 (2017). https://doi.org/10.1021/acsami.6b08019
  13. H. J. Choi, S. S. Kim, and S. C. Hong, Improving the activity of Mn/TiO2 catalysts through control of the pH and valence state of Mn during their preparation, J. Air Waste Manage. Assoc., 62, 362-369 (2012). https://doi.org/10.1080/10473289.2011.653515
  14. S. S. Kim, K. H. Park, and S. C. Hong, A study on HCHO oxidation characteristics at room temperature using a Pt/TiO2 catalyst, Appl. Catal. A: Gen., 398, 96-103 (2011). https://doi.org/10.1016/j.apcata.2011.03.018
  15. C. Yang, J. Ren, and Y. Sun, Role of La2O3 in Pd-supported catalysts for methanol decomposition, Catal. Lett., 84, 123-129 (2002). https://doi.org/10.1023/A:1021045122126
  16. D. H. Kim, P. W. Seo, and S. C. Hong, Enhanced NH3-SCR activity of V/TiO2 catalyst prepared by various ball mill method, Clean Technol., 23(1), 64-72 (2017). https://doi.org/10.7464/ksct.2017.23.1.064
  17. S. S. Kim, H. H. Lee, and S. C. Hong, The effect of the morphological characteristics of TiO2 supports on the reverse water-gas shift reaction over Pt/TiO2 catalysts, Appl. Catal. B: Environ., 119-120, 100-108 (2012). https://doi.org/10.1016/j.apcatb.2012.02.023
  18. P. W. Seo, S. P. Cho, S. H. Hong, and S. C. Hong, The influence of lattice oxygen in titania on selective catalytic reduction in the low temperature region, Appl. Catal. A: Gen., 380, 21-27 (2010). https://doi.org/10.1016/j.apcata.2010.03.016