DOI QR코드

DOI QR Code

Leachate Concentration to Groundwater Considering Source Depletion for Risk Assessment in Vadose Zone of Contaminated Sites

오염부지 위해성평가 시 불포화대 오염원 고갈을 고려한 토양유출수 농도 결정

  • 장선우 (한국건설기술연구원 국토보전연구본부)
  • Received : 2020.10.14
  • Accepted : 2020.11.03
  • Published : 2020.12.01

Abstract

This study assessed source depletion in the vadose zones of contaminated sites. The possible range of infiltration rate in Korea was statistically analyzed. The results showed a trend of decreasing leachate concentration of 13 pollutants used for risk assessment. Among them, benzene, ethylbenzene, toluene, and xylene showed a lower leachate concentration in groundwater over time due to their low distribution coefficient and also possible biodegradation effects. The average values of the relative concentration could be taken as a default index due to a very small range of uncertainties. In the case of heavy metals, it was shown that the leachate concentration in a pollutant does not decrease over time. Considering the annually different infiltration, a site-specific source-depletion scenario was applied to Cheongju in North Chungcheong Province. The result was expressed as a time series of the relative concentration of the leachate concentration, and this was compared to the trend by averaged Korean infiltration. Finally, an open-source code that used Python was used to help calculate the leachate concentration by this site-specific infiltration scenario.

본 연구는 오염부지의 불포화대 내 오염물질의 농도가 지하수면에 유입되는 경로에서 토양유출수 농도의 변화를 연구하였다. 침투율의 범위를 통계적으로 분석하는 방식의 연구방법으로 위해성평가 대상 오염물질 13종을 대상으로 지하수 유입농도 감소의 경향성을 살펴보았다. 벤젠, 에틸벤젠, 톨루엔, 크실렌의 경우에는 낮은 토양분배계수값과 생분해로 인해서 시간이 지날수록 낮은 지하수 유입농도를 보이는 것으로 파악하였다. 생분해지수 및 침투율의 불확실성을 통계적으로 표현한 결과, 상대농도에서는 불확실성이 그다지 크게 나타나지 않았기 때문에 그 경향을 계산된 토양유출수 평균값으로 나타낼 수 있었다. 중금속의 경우는 지연계수가 상대적으로 크기 때문에 오염원에서의 토양유출수 농도가 수십년 동안에도 감소하지 않는 것으로 나타났다. 또한 청주 지역 현장 부지의 연간 침투율을 계산하여 현장특이적 침투율값으로 활용할 경우, 계산된 오염물질의 토양 유출수 농도를 시계열로 표현하여 국내 평균 침투율에 의한 상대농도 대표값과 비교하였다. 마지막으로 파이썬(Python) 프로그래밍 언어로 구성한 코드를 부록에 수록하여 타 연구자들이 오염원 고갈에 의한 용존 농도 감소를 계산하는데 활용할 수 있도록 하였다.

Keywords

References

  1. Arnold, J. G. and Fohrer, N. (2005). "SWAT2000: Current capabilities and research opportunities in applied watershed modeling." Hydrological Processes, Vol. 19, No. 3, pp. 563-572. https://doi.org/10.1002/hyp.5611
  2. ASTM (2000). Standard guide for risk-based corrective action, standard E2081-00 (Reapproved 2004), ASTM International, West Conshohocken, PA, USA, p. 95.
  3. Chang, S. W. and Chung, I .M. (2015). "Analysis of groundwater budget in a water curtain cultivation site." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 35, No. 6, pp. 1259-1267 (in Korean). https://doi.org/10.12652/Ksce.2015.35.6.1259
  4. Chang, S. W., Moon, H. S., Lee, E. H., Joo, J. C. and Nam, K. P. (2019a). "Numerical study of contaminant pathway for risk assessment in subsurface of contaminated sites." Journal of Soil and Groundwater Environment, Vol. 24, No. 3, pp. 13-23 (in Korean). https://doi.org/10.7857/JSGE.2019.24.3.013
  5. Chang, S. W., Kim, M. G. and Chung, I. M. (2019b). "Numerical study of contaminant pathway based on generic-scenarios and contaminant-based scenarios of vadose zone." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 39, No. 6, pp. 751-758 (in Korean). https://doi.org/10.12652/Ksce.2019.39.6.0751
  6. Kim, M. J. and Park, J. W. (2007). "Contaminant fate and transport modeling for risk assessment." Journal of Soil and Groundwater Environment, Vol. 12, No. 1, pp. 44-52 (in Korean).
  7. Mazzieri, F., Di Sante, M., Fratalocchi, E. and Pasqualini, E. (2016). "Modeling contaminant leaching and transport to groundwater in Tier 2 risk assessment procedures of contaminated sites." Environmental Earth Sciences, Vol. 75, No. 18, 1247. https://doi.org/10.1007/s12665-016-6043-1
  8. Ministry of Environment (MOE) (2006). Soil contamination risk assessment guideline, No. 283 (in Korean).
  9. Ministry of Environment (MOE) (2010). Human health risk assessment for contaminated sites (in Korean).
  10. Ministry of Environment (MOE) (2020). National groundwater information center, Available at: https://www.gims.go.kr (Accessed: October 06, 2020).
  11. Ryu, H. R. (2010). Development of realistic risk assessment framework for organic contaminants incorporating desoption-limited bioavailability and dilution attenuation factors, Ph.D. Dissertation, Seoul National University.
  12. United States Environmental Protection Agency (USEPA) (1996a). Soil screening guidance: User's guide, office of emergency and remedial response, EPA/540/R-96/018. NTIS PB96-963505, Washington, DC.
  13. United States Environmental Protection Agency (USEPA) (1996b). Soil screening guidance: Technical background document, Office of Emergency and Remedial Response, EPA/540/R-96/128. NTIS PB96-963502, Washington, DC.
  14. United States Environmental Protection Agency (USEPA) (2002). Supplemental guidance for developing soil screening levels for superfund sites: Appendix C, Washington, DC.
  15. United States Environmental Protection Agency (USEPA) (2005). Partition coefficients for metals in surface water, soil, and waste, Washington, DC.
  16. Verginelli, I. and Baciocchi, R. (2013). "Role of natural attenuation in modeling the leaching of contaminants in the risk analysis framework." Journal of Environmental Management, Vol. 114, pp. 395-403. https://doi.org/10.1016/j.jenvman.2012.10.035